摘要
In an attempt to explore the relationships between phosphatidylglycerol (PG) molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition, PG molecular species, D1 protein, electron transport activities of thylakoid membrane and the potential quantum yield (FvlFm) in rice treated under middle and low photon flux density (PFD) at 11℃ were analyzed by high performance liquid chromatography, enzyme hydrolysis, gas phase chromatography (GC) and so on. Results showed that the major molecular species of PGs in rice thylakoid membrane were 18:3/16:0, 18:3/16:1(3t), 18:2/16:0, 18:2/16:1(3t), 18:1/16:0, 18:1/16:1(3t), 16:0/16:0, 16:0/16:1(3t). There were large differences in the contents of unsaturated PG molecular species such as 18:1-3/16:0-16:1(3t) and saturated PG molecular species like 16:0/16:0-16:1(3t) among japonica cv 9516 0-9516), japonica-indica hybrid F1 j-9516/i-SY63 (ji-95SY) and indica cv Shanyou 63 (i-SY63). J-9516 containing higher contents of unsaturated PG molecular species was manifest in stable D1 protein contents under chill and tolerant to chill-induced photoinhibition. In contrast to j-9516, i-SY63 with lower contents of unsaturated PG molecular species, exhibited unstable D1 protein contents under chill and was sensitive to chill-induced photoinhibition, ji-95SY containing middle contents of unsaturated PG molecular species between those of j-9516 and i-SY63, exhibited mid extent of sensitivity to chill-induced photoinhibition. The losses in D1 protein also account for the inhibition in electron transport activity of thylakoid membrane and the observed decline in FvlFm. The PG molecular species that is efficient in raising chilling-resistant capacity were those containing unsaturated fatty acids, namely, unsaturated PG molecular species. These results implied that the substrate selectivity of the glycerol-3-phosphate acyltransferase in chloroplasts towards 16:0 or 18:1 displayed greatly the difference between japonica and indica rice. Itwas possible to enhance the capacity of resistance to chilling-induced photoinhibition by improving or modifying the GPAT gene.
In an attempt to explore the relationships between phosphatidylglycerol (PG) molecular species of thylakoid membrane lipids and sensitivities to chilling-induced photoinhibition, PG molecular species, D1 protein, electron transport activities of thylakoid membrane and the potential quantum yield (FvlFm) in rice treated under middle and low photon flux density (PFD) at 11℃ were analyzed by high performance liquid chromatography, enzyme hydrolysis, gas phase chromatography (GC) and so on. Results showed that the major molecular species of PGs in rice thylakoid membrane were 18:3/16:0, 18:3/16:1(3t), 18:2/16:0, 18:2/16:1(3t), 18:1/16:0, 18:1/16:1(3t), 16:0/16:0, 16:0/16:1(3t). There were large differences in the contents of unsaturated PG molecular species such as 18:1-3/16:0-16:1(3t) and saturated PG molecular species like 16:0/16:0-16:1(3t) among japonica cv 9516 0-9516), japonica-indica hybrid F1 j-9516/i-SY63 (ji-95SY) and indica cv Shanyou 63 (i-SY63). J-9516 containing higher contents of unsaturated PG molecular species was manifest in stable D1 protein contents under chill and tolerant to chill-induced photoinhibition. In contrast to j-9516, i-SY63 with lower contents of unsaturated PG molecular species, exhibited unstable D1 protein contents under chill and was sensitive to chill-induced photoinhibition, ji-95SY containing middle contents of unsaturated PG molecular species between those of j-9516 and i-SY63, exhibited mid extent of sensitivity to chill-induced photoinhibition. The losses in D1 protein also account for the inhibition in electron transport activity of thylakoid membrane and the observed decline in FvlFm. The PG molecular species that is efficient in raising chilling-resistant capacity were those containing unsaturated fatty acids, namely, unsaturated PG molecular species. These results implied that the substrate selectivity of the glycerol-3-phosphate acyltransferase in chloroplasts towards 16:0 or 18:1 displayed greatly the difference between japonica and indica rice. Itwas possible to enhance the capacity of resistance to chilling-induced photoinhibition by improving or modifying the GPAT gene.
基金
the National Natural Science Foundation of China (30270794)
Natural Science Foundation of Jiangsu Province (BK2005041, BK2007063)
the Natural Science Foundation of Education Bureau of Jiangsu Province(04KJB210107, 06KJB180087).