期刊文献+

基于改进变分水平集的红外图像分割方法 被引量:9

Infrared Image Segmentation Based on Improved Variational Level Set
下载PDF
导出
摘要 提出一种基于水平集的红外图像偏微分分割方法,通过改进Chan-Vese模型中的能量函数获得偏微分方程,该能量函数将红外图像边缘与区域信息相结合,取得了全局极小值,该能量模型对水平集初始曲线的位置不敏感,并可定位图像边缘。基于该模型的变分水平集分割方法可分割出红外图像目标。实验结果表明,该方法效果良好,便于下一步的红外目标识别与跟踪。 This paper proposes a novel level set-based Partial Differential Equation(PDE) for infrared image segmentation. The PDE is derived from an energy functional which is a modified version of the fitting term of the Chan-Vese model. The improved energy functional is designed to obtain more accurate infrared image edges and global minimum. The existence of a global minimum makes the algorithm invariant to the initialization of the level set function. Variation level set based on this energy model is suitable for the segmentation of infrared image targets. Experimental results verify the effectives and robustness of this segmentation method which facilitates the target recognition and track in the next step.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第4期196-197,200,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60572080,60772151)
关键词 图像分割 曲线演化 水平集方法 Chan—Vese模型 image segmentation curve evolution level set method Chan-Vese model
  • 相关文献

参考文献5

  • 1Sun Sungu. Small Target Detection Using Center-surround Difference with Locally Adaptive Threshold[C]//Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis. Beijing, China: [s. n.]. 2005: 402-407.
  • 2Nelson B N. Automatic Vehicle Detection in Infrared Imagery Using a Fuzzy Inference-based Classification System[J]. IEEE Trans. on Fuzzy Systems, 2001, 9(1): 53-61.
  • 3Abutaleb A S. Automatic Thresholding of Gray-level Pictures Using Two-dimensional Entropy[J]. Computer Vision, Graphics, and Image Processing, 1989, 47(7): 22-32.
  • 4Chan T F, Vese L A. Active Contours Without Edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
  • 5Osher S, Sethian J A. Fronts Propagating with Curvature-dependent Speed: Algorithms Based on Hamilton-jacobi Formulations[J]. Journal of Computational Physics, 1998, (79): 12-49.

同被引文献82

  • 1周则明,王元全,王平安,夏德深.基于水平集的3D左心室表面重建[J].计算机研究与发展,2005,42(7):1173-1178. 被引量:8
  • 2胡波,毛罕平,张艳诚.基于二维直方图的杂草图像分割算法[J].农业机械学报,2007,38(4):199-202. 被引量:25
  • 3Kazubek M.Wavelet Domain in Image Denoising by Thresholding and Wiener Filtering[J].IEEE Transactions on Signal Processing Letters,2003,10(11):324-326.
  • 4Li X,Orchard M T.Spatially Adaptive Image Denoising Under Overcomplete Expansion[C]//Proc.of IEEE Int'l Conf.on Image Process.[S.1.]:IEEE Press,2000:300-303.
  • 5Shui Penglang.Image Denoising Algorithm via Doubly Local Wiener Filtering with Directional Windows in Wavelet Domain[J].Signal Processing Letters,2005,12(10):681-684.
  • 6Black M J,Sapiro G,Marimont D H,et al.Robust Anisotropic Diffusion[J].IEEE Transactions on Image Processing,1998,7(3):421-432.
  • 7Perona P,Malik J.Scale Space and Edge Detection Using Anisotropic Diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 8Catte F,Lions P L,Morel J M,et al.Image Selective Smoothing and Edge Detection by Nonlinear Diffusion[J].SIAM Journal of Numerical Analysis,1992,29(1):182-193.
  • 9Lysaker M,Lundervold A.Noise Removal Using Fourth-order Partial Differential Equation with Applications to Medical Magnetic Resonance Images in Space and Time[J].IEEE Transactions on Image Processing,2003,12(12):1579-1590.
  • 10You Y L,Kaveh M.Fourth-order Partial Differential Equation for Noise Removal[J].IEEE Transactions on Image Processing,2000,9(10):1723-1730.

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部