期刊文献+

基于免疫记忆的蚁群算法的WTA问题求解 被引量:14

Immune Memory-based Ant Colony Algorithm for Weapon-target Assignment Solution
下载PDF
导出
摘要 武器-目标分配(WTA)是影响武器系统作战有效性的重要因素之一。该文在蚁群算法中增加一个额外的记忆库,利用免疫记忆和克隆选择的思想和方法,提出了基于免疫记忆的蚁群算法(IMBACA),并用于求解武器-目标分配问题。分别用给定数据集和随机数据集的WTA问题进行实验,并与传统蚁群算法和蚁群算法的混合算法进行比较,结果显示IMBACA在解的质量和时间性能上均取得了较好的效果。 Weapon-Target Assignment(WTA) is one of the key factors that affects the performance of weapon systems. By adding an extra immune memory library to the ant colony model, this paper proposes an Immune Memory-Based Ant Colony Algorithm(IMBACA) on the basis of the idea and method of immune memory and clone selection, to solve WTA problem. The algorithm is examined with the given and stochastic data set respectively, and compared with the traditional ant colony algorithm and GAACO. Experimental results indicate that the algorithm can evidently improve the performance of both solution quality and speed.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第4期215-217,共3页 Computer Engineering
关键词 武器-目标分配 免疫记忆 蚁群算法 Weapon-Target Assignment(WTA) immune memory ant colony algorithm
  • 相关文献

参考文献9

  • 1Colomi A, Dorigo M, Maniezzo V, Distributed Optimization by Ant Colonies[C]//Proceedings of European Conference on Artificial Life. Paris, France: [s. n.]. 1991: 134-142.
  • 2Dorigo M, Maniezzo V, Colomi A. The Ant System : Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man & Cybernetics B, 1996, 26(2): 29-41.
  • 3黄树采,李为民.目标分配问题的蚁群算法研究[J].系统工程与电子技术,2005,27(1):79-80. 被引量:41
  • 4Lee Zenjung, Lee Chouyuan, Su Shunfeng. An Immunity-based Ant Colony Optimization Algorithm for Solving Weapon-target Assignment Problem[J]. Applied Soft Computing Journal, 2002, 2(1): 39-47.
  • 5范洁,刘玉树,龚元明,陈云飞.基于混合蚁群算法的WTA问题求解[J].计算机工程与应用,2005,41(10):59-61. 被引量:12
  • 6焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224
  • 7Acan A, Dorigo M. An External Memory Implementation in Ant Colony Optimization[C]//Proc. of ANTS 2004. Berlin, Heidelberg: Springer-Verlag, 2004: 73-82.
  • 8Guntsch M, Middendorf M. Cagnoni S. A Population Based Approach for ACO[C]//Proceedings of Applications of Evolutionary Computing-EvoWorkshops. Berlin, Heidelberg: Springer-Verlag, 2002: 72-81.
  • 9曹奇英,何张兵.WTA问题的遗传算法研究[J].控制理论与应用,2001,18(1):76-79. 被引量:38

二级参考文献72

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 5M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 6R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.
  • 7R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59.
  • 8A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270.
  • 9Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95.
  • 10G Sartor, L Karl Branting. Introduction: Judicial Applications of artificial intelligence [J]. Artificial Intelligence and Law, 1998,6(24) : 105- 110.

共引文献307

同被引文献174

引证文献14

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部