期刊文献+

求解K-means聚类更有效的算法 被引量:9

More effective algorithm for K-means clustering
下载PDF
导出
摘要 聚类分析是数据挖掘及机器学习领域内的重点问题之一。K-means聚类由于其简单实用,在聚类划分中是应用最广泛的一种方案。提出了在传统的K-means算法中初始点选取的新方案,对于K-means收敛计算时利用三角不等式,提出了加速收敛过程的改进方案。实验结果表明,改进后的新方法相对于传统K-means聚类所求的结果有较好的聚类划分。 Clustering analysis is one ofthe important problems in the fields of data mining and machine learning. Among these clustering methods, K-means is one of the most popular schemes owing to its simple and practicality. The standard K-means clustering is investigated and an improved algorithm is given by selecting the initial centers and accelerating the process of convergence. Experiments show that the new algorithm is more effective and can get a better result than the standard K-means clustering both in the cost and running time.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第2期378-380,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60573024)
关键词 K-MEANS聚类 聚类 三角不等式 K-meansclustering clustering triangle inequality
  • 相关文献

参考文献4

  • 1Charles Elkan. Using the triangle inequality to accelerate Kmeans[C].Washington DC:Proceeding of the Twentieth International Conference on Machine Learning,2003.
  • 2Kanungo,Mount D M,Netanyahu N.A local search approximation algorithm for K-means Clustering[J].Computational Geometry:Theory and Applications,2004,28:89-112.
  • 3Song Mingjun.Fast K-means algorithms with constant approximation[C].Proceedings of the 16th Annual International Symposium on Algorithms and Computation,2005:1029-1038.
  • 4Rafail Ostrovsky Yuval Rabani.The effectiveness of lloyd-type methods for the K-means problem[C].Proceedings of 47st Annual IEEE Symposium on the Foundations of Computer Science FOCS,2006.

同被引文献68

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部