期刊文献+

多项式空间的对偶及其在多元插值中的应用 被引量:1

The Dual Space of Polynomials and Its Application on Interpolation in Several Variables
下载PDF
导出
摘要 本文通过把域K上n元多项式环看成域K上的无限维向量空间A,把n维仿射空间Kn中的每一点看成A上的线性泛函,从而Kn为对偶空间A的子集,利用对偶空间的理论得到了一些有趣的理论结果,弄清了Kn上点有限拓扑的结构,给出了判定给定结点组是否是给定多项式空间的适定结点组的判定准则。 This paper presents some interest results by regarding polynomial ring as an infinite dimensional vector space A over the coefficient field and n dimensional affine space K n as a subspace of the dual space A * of vector sapace A. It clarifies the construction of the point finite topology over K n. Based on these results, a criterion is given, which can detect whether a set of segment points is properly posed for preassigned polynomial space. In the end, an algorithm to construct a dual basis of an ideal is put forward.
出处 《数学进展》 CSCD 北大核心 1997年第3期257-263,共7页 Advances in Mathematics(China)
关键词 对偶 多元插值 多项式空间 线性泛函 dual Grebner basis multivariate interpolation
  • 相关文献

参考文献1

  • 1王仁宏,多元函数逼近,1988年

同被引文献2

  • 1Mariano Gasca,Thomas Sauer. Polynomial interpolation in several variables[J] 2000,Advances in Computational Mathematics(4):377~410
  • 2M. G. Marinari,H. M. M?ller,T. Mora. Gr?bner bases of ideals defined by functionals with an application to ideals of projective points[J] 1993,Applicable Algebra in Engineering, Communication and Computing(2):103~145

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部