摘要
本文通过把域K上n元多项式环看成域K上的无限维向量空间A,把n维仿射空间Kn中的每一点看成A上的线性泛函,从而Kn为对偶空间A的子集,利用对偶空间的理论得到了一些有趣的理论结果,弄清了Kn上点有限拓扑的结构,给出了判定给定结点组是否是给定多项式空间的适定结点组的判定准则。
This paper presents some interest results by regarding polynomial ring as an infinite dimensional vector space A over the coefficient field and n dimensional affine space K n as a subspace of the dual space A * of vector sapace A. It clarifies the construction of the point finite topology over K n. Based on these results, a criterion is given, which can detect whether a set of segment points is properly posed for preassigned polynomial space. In the end, an algorithm to construct a dual basis of an ideal is put forward.
出处
《数学进展》
CSCD
北大核心
1997年第3期257-263,共7页
Advances in Mathematics(China)