期刊文献+

胸部CT中肺实质的自动分割与计算机辅助诊断 被引量:7

Automatic Segmentation of Pulmonary Parenchyma in Thoracic CT and Computer-Aided Diagnosis
下载PDF
导出
摘要 为解决肺气肿的定量分析与辅助诊断问题,根据肺部高分辨率CT图像的特点,应用自动阈值分割与轮廓跟踪方法提取肺部实质区域,并应用基于密度分布的肺气肿量化诊断标准确定病变区域与程度.实验证明,该方法能准确、有效地对肺部区域实行全自动分割,并对病变区域进行统计分析,最终实现肺气肿的量化分析与准确诊断. Abstract: In order to implement the quantitative analysis and aided diagnosis of emphysema, an aaaputive thresholdsegmenting and contour-tracing method was proposed to automatically extract the information of pulmonary parenchyma from high-resolution CT images, and the region and severity of emphysema were then determined according to the quantitative analysis criterion based on density distribution. Experimental results show that the proposed method can segment the pulmonary parenchyma automatically with accurate and effective results, and can statistically analyze the pathological change regions, thus implementing the quantitative analysis and exact diagnosis of emphysema.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期72-75,共4页 Journal of South China University of Technology(Natural Science Edition)
关键词 高分辨率CT 医学图像 肺部区域 分割 辅助诊断 high resolution CT medical image lung region segmentation aided diagnosis
  • 相关文献

参考文献11

二级参考文献43

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2王家霖,刘长恩,李慧,何振敏,彭勋.慢性阻塞性肺气肿X线胸片与肺功能检查的对照研究[J].承德医学院学报,1994,11(2):91-93. 被引量:1
  • 3潘纪戌 陈起航 等.肺部高分辨率CT[M].北京:中国纺织出版社,1995.155-156.
  • 4[1]Zhao Bin-sheng, David Yankelevitz. Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images[J]. Medical Physics, 1999,26(6) :889~895.
  • 5[2]Ashton E A, Berg M J, Parker K J. Segmentation and feature extration techniques, with applications to MRI head studies[J].Magnetic Resonance Medicine, 1995,33(5) :670~677.
  • 6[3]McInerney T, Terzopoulos D, Medical image segmentation using topologically adaptable snakes [A]. In: Proceedings First International Conference on Computer Vision, Virtual Reality,and Robotics in Medicine (CVRMed'95)[C], Nice, France,1995,905:92~101.
  • 7[4]Vincent Caselles, Ron Kimmel. Minimal surfaces based object segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(4): 201~209.
  • 8[5]Rafael Wiemkera, Andre Zwartkruisb. Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT[A]. In: Proceedings of International Conference Computer Assisted Radiology and Surgery (CARS'01) [C], Berlin,Germany, June 2001:611~616.
  • 9[6]Lee Chien-cheng, Chung Pau-choo, Recognizing abdominal organs in CT images using contextual Neural Network and Fuzzy rules [A]. In: Proceedings of the 22 Annual Engineering of Medicine and Biology Society International Conference [C],Chicago Illinois USA, 2000:1745 ~ 1748.
  • 10[7]Koss J E, Newman F D. Abdominal organ segmentation using texture transforms and Hopfield Neural Network [J]. IEEE Transactions on Medical Imaging, 1999,18(7): 640~648 .

共引文献78

同被引文献127

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部