期刊文献+

基于BPSO的水下目标特征选择方法 被引量:3

A Novel Method Based on Binary Particle Swarm Optimization for Underwater Targets Feature Selection
下载PDF
导出
摘要 为了提高水下目标识别的识别率,降低水下目标特征提取的代价,提出了基于二进制粒子群优化(Discrete Binary Parti- cle Swarm Optimization,BPSO)的水下目标特征选择算法,并结合k近邻分类算法,对三类实测水下目标数据进行了最优特征集的选择及分类实验。实验结果表明该特征选择方法能有效降低水下目标的特征维数,选择出利于分类的特征子集,提高了水下目标识别的分类效果。为了说明方法对于其他模式识别问题的效果,另外选择了UCI机器学习数据库中的四组标准数据进行仿真分析。 In this paper, a new feature selection method based on BPSO (Discrete Binary Particle Swarm Optimization) algorithm is proposed for improving classification accuracy and reducing feature dimensions of underwater acoustic targets. BPSO is used to select optimum feature subset, and k - NN is used to evaluate the performance of feature subset. Three different classes of underwater targets datasets and standard datasets from UCI machine learning repository are used in the experiment. The results show that the feature selection method based on BPSO is an effective technique for underwater acoustic targets' feature selection, and can enhance classification accuracy.
机构地区 西北工业大学
出处 《计算机仿真》 CSCD 2008年第1期196-199,共4页 Computer Simulation
关键词 粒子群优化算法 算法 特征选择 水下目标识别 Particle swarm optimization (PSO) Algorithm Feature selection Underwater target recognition
  • 相关文献

参考文献8

二级参考文献24

  • 1R C Eberhaxt and J Kennedy. A New Optimizer Using Particles Swarm Theory[C]. Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 2Y H Shi and R C Eberhart. A Modified Partide Swama Optimizer[c].IEEE International Conference on Evolutionary Computation, Anchorage,Alaska, May 4-9,1998.
  • 3R C Eberhart and J Kennedy. A New Optimizer Using Particles Swarm Theory[C] Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 4Y H Shi and R C Eberhart. A Modified Particle Swama Optimizer[C].IEEE International Conference on Evolutionary Computation, Anchoeage,Alaska, May 4 - 9,1998.
  • 5Dash M, et al. Feature selection for classification. Intelligent Data Analysis, 1997, 1: 131
  • 6Dougherty J, et al. Supervised and unsupervised discretization of continuous features. Proceedings of the 12th International Conference on Machine Learning, 1995. 194-202
  • 7http: //www.cis.temple.edu/-ingargio/cis587/readings/id3-c45.html
  • 8张学林.基于小波变换的舰船辐射噪声信号特征提取[Z].西安:西北工业大学,2000.72-101.
  • 9William Soares-Filho, Jose Manoel de Seixas, Luiz Pereira Caloba. Principal Component Analysis for Classifying Passive Sonar Signals. The 2001 IEEE International Symposium on Circuits and Systems,2001, 3:592~595.
  • 10Dash M, Liu H. Intelligent Data Analysis, 1997,1(3):131-156.

共引文献68

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部