期刊文献+

非凸曲面参数化在游戏引擎中的实现 被引量:1

Parameterization of non-convex surface and its application in game engine
下载PDF
导出
摘要 参数化是三维游戏模型制作的一个基本原则,是曲面拟合过程中的关键技术。提出一种新的网格曲面参数化算法,为非凸曲面构造凸边界,结合均值坐标参数化方法进行参数化,最后应用到游戏引擎的建模模块中,实验说明了算法的可行性和高效性。 Parameterization is the basic principle of 3D games modeling and the crucial technique in surface fitting, A new algorithm for mesh parameterization was proposed, Attach a convex boundary for non-convex mesh and then parameterize the interior vertices based on mean value coordinate method, This algorithm was applied to the modeling module of game engine, and the experimental results demonstrate the feasibility and efficiency of the method,
出处 《计算机应用》 CSCD 北大核心 2008年第3期787-789,共3页 journal of Computer Applications
基金 国家863计划项目(2006AA01Z335) 四川省科技攻关计划(04GG006-028)
关键词 曲面 参数化 均值坐标 虚拟边界 surface parameterization mean value virtual boundary
  • 相关文献

参考文献17

  • 1晏冬梅,张丽艳.几种典型三角网格曲面参数化方法的分析与比较[J].机械制造与自动化,2005,34(3):48-51. 被引量:3
  • 2付妍,周秉锋.闭合三角网格的分割与保角参数化[J/OL].[2007-08-20].http://www-paper-edu-cn/
  • 3HORMANN K, GREINER G. MIPS: An efficient global parameterization method[ C]// Curve and Surface Design. Saint-Malo: Vanderbilt University Press, 1999:153 - 162.
  • 4SANDER P V, HOPPE H. Texture mapping progressive meshes [ C]// Proceedings of SIGGRAPH. New York:.ACM Press, 2001: 409 -416.
  • 5甘家付,杨勋年,赵艳.一种网格参数化的优化算法[J].浙江大学学报(理学版),2004,31(5):538-543. 被引量:3
  • 6KHAREVYCH L, SPRINGBORNS B. Discrete confomlal mappings via circle patterns[ J].ACM Transactions on Graphics, 2006, 25 (2) :412 -438.
  • 7ECK M, DEROSE T. Multiresolution analysis of arbitrary meshes [ J]. Computer Graphics, 1994, 29:173 - 182.
  • 8TUTTE W T. Convex representations of graphs[ C]//Proceedings of the London Mathematical Society. London: IEEE Press, 1960:304 - 320.
  • 9FLOATER M S. Parameterization and smooth approximation of surface triangulation[ J]. CAD, 1997, 14(3) : 231 -250.
  • 10FLOATER M S. Mean value coordinates[ J]. Computer Aided Geometric Design, 2003, 20(1) : 19 -27.

二级参考文献19

  • 1SHEFFER A, STURLER E D. Smoothing an overlap grid to minimize linear distortion in texture mapping[J]. ACM Transactions on Graphics, 2002, 21 (4):874-890.
  • 2SHEFFER A. Skinning 3D meshes [J]. Graphical Models,2003, 65(5) :274-285.
  • 3PRAUN E, HOPPE H. Spherical parameterization and remeshing [J]. ACM Transactions on Graphics(Siggraph'03 Proceedings) ,2003,22(3): 340-349.
  • 4MAILOT J, YAHIA H, VERRSOUST A. Interactive Texture Mapping[A]. Computer Graphics Proceedings Annual Conference Series [C]. New York:ACM SIGGRAPH,1993. 27-34.
  • 5HORMANN K, LABSIK U, GREINER G. Remeshing triangulated surfaces with optimal parameterizations[J]. Computer Aided Design, 2001, 33(11):779-788.
  • 6HORMANN K, GREINER G. MIPS: an efficient global parameterization method[A]. Curves and Surface Design Saint-Malo [C]. Vancouver: Vancouver University Press, 2000. 153-162.
  • 7DESBRUN M, MEYER M, ALLIEZ P. Intrinsic parameterizations of surface mesh[J]. Computer Graphics Forum, 2002,12:209-218.
  • 8ECK M, DEROSE T, DUCHAMP T, et al. Multiresolution analysis of arbitrary meshes[A]. Computer Graphics Proceedings Annual Conference Series[C]. New York: ACM SIGGRAPH,1995. 173-182.
  • 9FLOATER M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14: 231-250.
  • 10FLOATER M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20: 19- 27.

共引文献4

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部