期刊文献+

基于GMM的普通话和四川方言独立文本的说话人确认 被引量:2

Mandarin-Sichuan dialect bilingual text-independent speaker verification using GMM
下载PDF
导出
摘要 针对训练和测试阶段中的语音数据类型(普通话和四川方言)的不匹配导致说话人确认系统性能下降很大的问题,提出了一种新的建立高斯混合模型(GMM)方法——普通话和四川方言按比例混合建立普通话和四川方言联合GMM的方法,并发现使系统针对普通话和四川方言不匹配导致的性能下降率至很低(2.79%)的比例。实验结果表明,该方法可以有效地加强测试阶段针对语种变化的鲁棒性,可以有效的减少普通话和四川方言在训练和测试阶段的不匹配造成的性能下降率。 Due to the mismatch between mandarin and Sichuan dialect in training and test stages, the performance of speaker verification system degrades dramatically. To solve this problem, a combined Gaussian Mixture Model ( GMM), which is trained by proportional pooling mandarin and Sichuan dialect, was presented in this paper, Compared with, the Gaussian mixture model trained solely using mandarin/Sichuan dialect, the combined Gaussian mixture model described the characteristic of speaker from both mandarin and Sichuan dialect. Experiments on a self-built mandarin-Sichuan dialect speech database demonstrate that the introduced combined Gaussian mixture model is more robust for speech mismatching between mandarin and Sichuan dialect. A proper proportion between pooling mandarin and Sichuan dialect speech was also provided.
出处 《计算机应用》 CSCD 北大核心 2008年第3期792-794,共3页 journal of Computer Applications
关键词 说话人确认 高斯混合模型 独立文本 双语种说话人确认 speaker verification Gaussian Mixture Models (GMM) text-independent bilingual speaker verification
  • 相关文献

参考文献7

  • 1杨澄宇,赵文,杨鉴.基于高斯混合模型的说话人确认系统[J].计算机应用,2001,21(4):7-8. 被引量:5
  • 2QUATIERI T F. Discrete-time speech signal processing: principles and practice[ M].北京:电子工业出版社,2004:572-575.
  • 3AUCKENTHALER R, CAREY M J, MASON J S D. Language dependency in text-independent speaker verification[ C]//IEEE Acoustics, Speech, and Signal Processing. [ S. l. ] : IEEE, 2001, 1 : 441 -444.
  • 4AUCKENTHALER R, CAREY M, LIOYD-THOMAS H. Score normalisation in a text-independent speaker verification system[ J]. Digital Signal Processing, 2000, 10(1) :47 -48.
  • 5MA B , MENG H . English - Chinese bilingual text - independent speaker verification[ C]//IEEE Acoustics, Speech, and Signal Processing. [ S. l. ] : IEEE, 2004,5:293 -295.
  • 6REYNOLDS D A. Speaker identification and verification using Gaussian mixture speaker models [ J]. Speech Communication, 1995, 17:97 - 103.
  • 7FINAN R A, SAPELUK A T, DAMPER R I. Imposters cohort selection for score normalization in speaker verification [ J]. Pattern Recognition letters, 1997, 18:883 - 887.

二级参考文献2

共引文献4

同被引文献23

  • 1杨俊杰,崔效义,李敬阳,王莉,冯祖祎,李晓勇.常用语音特性在鉴别双胞胎语音中的区别力研究[J].中国人民公安大学学报(自然科学版),2006,12(3):21-24. 被引量:9
  • 2俞一彪,许允喜,芮贤义.一种语音特征参数子分量分析与有效性评价的新方法[J].信号处理,2007,23(2):188-191. 被引量:3
  • 3Lim J S, Oppenheim A V.Enhancement and bandwidth compression of noisy speech[C]//Proceedings of the IEEE, 1979, 67: 1586-1604.
  • 4Ephraim Y,Malah D.Speech enhancement using a minimum meansquare error log-spectral amplitude estimator[J].IEEE Trans on Acoustics,Speech,Signal Processing, 1985,ASSP-32:443-445.
  • 5Ephraim Y, Malah D.Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J]. IEEE Trans on Acoustics, Speech, Signal Processing, 1984, AS- SP-32 : 1109-1121.
  • 6Capp60.Elimination of the musical noise phenomenon with the Ephraim and Malah noise suppressor[J].IEEE Trans on Speech and Audio Processing, 1994,2 (2) : 345-349.
  • 7Scalart P,Vieira-Filho J.Speech enhancement based on a priori signal to noise estimation[C]//Proc 21st IEEE Int Conf Acoust Speech Signal Processing, Atlanta, GA, 1996,2 (2) : 629-632.
  • 8Cohen I.Speech enhancement using a noncausal a priori SNR estimator[J].IEEE Signal Processing Letters,2004(9):725-728.
  • 9Arslan L M.Modified Wiener filtering[J].Signal Processing,2006, 86(2) :267-272.
  • 10Xu Yao-hua, Guo Ying, Li Wei, et al.Elimination of musical noise phenomenon with Burg-based a priori SNR estimator[C]// Image and Signal Processing, 2008, CISP' 08,2008,5 : 328-332.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部