期刊文献+

基于支持向量回归机的谐波分析 被引量:4

Harmonics analysis based on support vector regression machine
下载PDF
导出
摘要 传统谐波分析方法中,窄带滤波器选频法对元件参数十分敏感,受外界环境影响较大,且精度难以保证;快速傅里叶分解法会产生频谱泄漏误差,不同频率谐波之间也有干扰;神经网络分析方法检测精度高,但其基于大样本的学习方法,受样本及训练初始值影响较大,有时会导致训练不成功。为减小外界环境影响,提高检测精度和降低噪声影响,提出基于支持向量回归机的谐波分析方法,它是基于统计学习理论,以结构风险最小化为原则的机器学习,通过引入松弛变量和损失函数提高算法泛化能力和减小误差,该算法最终转化为标准二次规划问题,有全局最优解。通过算例分析,并与傅里叶检测方法相比较,可知该算法具有稳定性好、检测精度高、对噪声不敏感等优点。 In traditional harmonics analysis methods,narrow- band truer frequency selecuon method can not ensure its accuracy as it is sensitive to component parameters and environment;Fourier detection method may bring spectrum leakage and interferences among different frequency harmonics; neural network analysis method is based on large sample study,it has higher detection accuracy but depends greatly on 'the samples and initial training value,sometimes training failure may occur. A harmonics analysis method based on SVR(Support Vector Regression machine) is presented,which is based on statistic learning with the principle of structural risk minimization. The slack variable and lose function are introduced to improve generalization capability and reduce error. It comes down to a standard quadratic programming problem and has the globally optimal solution. A Case study is performed and results show that,compared with Fourier detection method,this method has better stability and precision, insensitive to noises.
出处 《电力自动化设备》 EI CSCD 北大核心 2008年第2期73-75,共3页 Electric Power Automation Equipment
关键词 支持向量回归机 核函数 谐波分析 二次规划 support vector regression machine kernel function , harmonics analysis quadratic program
  • 相关文献

参考文献12

  • 1张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,19(3):63-66. 被引量:483
  • 2王小华,何怡刚.一种新的基于神经网络的高精度电力系统谐波分析算法[J].电网技术,2005,29(3):72-75. 被引量:54
  • 3VAPNIK V. Nature of statistical learning theory[M]. New York: Spring - Verlag, 1995.
  • 4BURGES C. A tutorial on support Vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998, 2(2):121 - 167.
  • 5KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel [J]. Neural Computation,2003, 15(7) : 1667 - 1689.
  • 6SMOLA A J. Learning with Kernels[D]. Berlin:Technische Universitat Berlin, 1998.
  • 7Scholkopf B,BURGES C J C,SMOLA A J. Advances in kernel methods-support vector learning[M]. Cambridge,MA:MIT Press, 1999.
  • 8Scholkopf B,BARTLETT P. Advances in neural information processing systems:shrinking the tube:a new support vector regression algorithm [M]. Cambridge,MA:MIT Press, 1998.
  • 9HEARST M A,Scholkopf B,DUMAIS S,et al. Trends and controversies-support vector machines[J]. IEEE Intelligent Systems, 1998,13(4) : 18 - 28.
  • 10宋晓芳,陈劲操.基于支持向量机的动态电能质量扰动分类方法[J].电力自动化设备,2006,26(4):39-42. 被引量:24

二级参考文献29

  • 1侯志俭,吴际舜,张琦雨,万亮,潘龙兴.电力系统短期负荷预报的几种改进手段[J].电力系统自动化,1996,20(7):27-31. 被引量:22
  • 2孙仲康.快速傅立叶变换及其应用[M].人民邮电出版社,1982.200-203.
  • 3[1]VAPNIK V. Statistical learning theory[M]. New York:New York Wiley, 1998.
  • 4[2]KEERTHI S S,SHEVADE S K,BHATTACHARYYA C,et al. Improvements to platt's SMO algorithm for SVM classifier design [ J ]. Neural Computation, 2001, ( 13 ): 637-649.
  • 5El-Amin I, Arafah I. Artificial neural networks for power systems harmonic estimation[C]. Proceedings of the 8^th International Conference on Harmonics and Quality of Power, Athens, Greece, 1998, 2: 999-1009.
  • 6刘晨辉.电力系统负荷预报理论和方法[M].哈尔滨:哈尔滨工业大学出版社,1987..
  • 7HUANG Jian-sheng,THONG N D.A neural fuzzy classifier for recognition of power quality disturbaces[J].IEEE Transactions on Power Delivery,2002,17 (2):609-616.
  • 8SANTOSO S,POWERS J E,GRADY M W.Power quality disturbance data compression using wavelet transformmethods[J].IEEE Transactions on Power Delivery,1997,12(3):1250-1257.
  • 9WILKINSON W A,COX M D.Discrete wavelet analysis of power quality transient[J].IEEE Transactions on Power Systems,1996,11 (4):2038-2044.
  • 10SANTOSO S,GRADY M W,POWERS J E,et al.Power quality disturbance wavelet recognition using wavelet based neural classifier.Part 2:application[J].IEEE Transactions on Power Delivery,2000,15(1):229-235.

共引文献570

同被引文献49

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部