摘要
在对偶理论作用下,将约束正项几何规划转变为线性约束下的非线性规划;利用Frank-wolte算法以及几何规划和约束条件的特点,为有多个变量的几何规划构造出了一种有效的间接算法,而且此方法更适用于困难度大于零的几何规划问题,实验表明此方法是可行的。
The positive definite geometric programming is translated into a nonlinear programming with constraints of linear equality by duality principle.An effective indirect algorithm has been designed for many variables geometric programming by the application of the Frank-wolfe and the application of the characteristics of object function and strained functions.And,this algorithm is especially suit for geometric programming with positive difficult degree.A numerical computation shows that this algorithm is feasible.
出处
《河南科技大学学报(自然科学版)》
CAS
2008年第1期71-73,共3页
Journal of Henan University of Science And Technology:Natural Science
基金
陕西省教育厅专项科研资助项目(03jk065)
西安建筑科技大学基础研究基金资助项目(DD12006)
关键词
几何规划
对偶理论
非线性
Geometric programming
Duality principle
Nonlinear