期刊文献+

基于混合遗传算法优化的MLP神经网络的调制方式识别 被引量:7

Modulation Recognition of Communication Signals Using MLP Neural Networks Trained with Hybrid Genetic Algorithms
下载PDF
导出
摘要 提出了一种基于遗传算法与多层感知神经网络的调制识别方法,运用改进遗传算法优化的多层感知神经网络分类器对各种调制信号的特征矢量进行分类识别.利用遗传算法的高效全局特性,克服了传统BP算法易于陷入局部最优解的缺点,同时在遗传算法基础上增加梯度下降算子,加快了收敛速度,使得分类器的识别率、收敛速度和鲁棒性得到明显改善,仿真实验的结果证明了此方法的有效性和可行性. A new approach based on genetic algorithm and MLP neural networks for the automatic modulation recognition of communications signals is presented. For the purpose of classification, we took the advantages of non-linearity and adaptiveness of MLP neural networks, combining with global convergence of the genetic algorithms. It overcomes the drawbacks of the general classifier of neural networks. local extremum and slow convergence speed. Requirements for a priori knowledge of the signals are minimized by the inclusion of an efficient carrier frequency estimator and low sensitivity to variations in the sampling epochs. Computer simulations indicate good performance on an AWGN channel, even at signal- to-noise ratios as low as 5 dB. This compares favorably with the performance obtained with most algorithms based on pattern recognition techniques.
作者 刘澍 王宏远
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2008年第1期104-108,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(60475024)
关键词 混合遗传算法 MLP神经网络 特征矢量 调制识别 hybrid genetic algorithm MLP neural networks characteristic vector modulation recognition
  • 相关文献

参考文献12

  • 1Nandi A K, Azzouz E E. Automatic Analogue Modulation Recognition [J]. Signal Processing, 1995, 1 (46) : 211-222.
  • 2Wen Jin, Zhao Jiali, Luo Siwei, et al. The Improvements of BP Neural Network Learning Algorithm [C]//2000 5th International Conference on Signal Processing Proceedings. New York: IEEE Press, 2000:1647-1650.
  • 3Campos P G, Oliveira E M J, Ludermir T B,et al. MLP Networks for Classification and Prediction with Rule Extraction Mechanism[C]//2004 IEEE International Joint Conference on Neural Networks proceedings. Budapest, Hungary: IEEE Press, 2004: 1387- 1392.
  • 4Chaiyaratana N, Zalzala A M S. Recent Developments in Evolutionary and Genetic Algorithms: Theory and Application [ C ] // Second International Conference on Genetic Algorithms in Engineering Systems, Innovations and Applications. London: Institution of Electrical Engineers, 1997: 270-277.
  • 5吴月娴,葛临东,许志勇,薛富强.基于遗传算法的自适应聚类与MQAM星座识别[J].计算机工程,2007,33(22):39-41. 被引量:3
  • 6Clegg J, Dawson J F, Porter S J,etal. The Use of A Genetic Algorithm to Optimize the Functional Form of A Multi-dimensional Polynomial Fit to Experimental Data[C]//The 2005 IEEE Congress on Evolutionary Computation. Edinburgh, Scotland: IEEE Press, 2005:928-934.
  • 7Nakashima T, Ariyama T, Yoshida T,et al. Performance Evaluation of Combined Cellular Genetic Algorithms for Function Optimization Problems[C]//2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation Proceedings: Computational intelligence in robotics and automation for the new Millennium. Kobe, Japan: IEEE Press, 2003:295-299.
  • 8Wong M L D,Nandi A K. Automatic Digital Modulation Recognition Using Artificial Neural Network and Genetic Algorithm [J]. Signal Processing, 2003, 1 (46) :311-322.
  • 9姚俊峰,杨献勇,彭小奇,张田,郑顺斌.基于混沌变量的变步长梯度下降优化算法[J].清华大学学报(自然科学版),2003,43(12):1676-1678. 被引量:15
  • 10杨小牛,楼才义.软件无线电与应用[M].北京:电子工业出版社,2001.

二级参考文献12

共引文献17

同被引文献78

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部