期刊文献+

一种连通非加权图的快速聚类方法 被引量:1

Method for clustering undirected and connected graphs without weights.
下载PDF
导出
摘要 图的聚类是数据聚类的一种很重要的变体,一方面通常可以用图来表示数据集中数据的相似度;另一方面对大型复杂网络的分析也引起人们越来越多地关注;而且对图进行聚类分析可以增强图的可视性,有助于可视化的分析、观测和导航。将最大最小方法的基本思想应用于非加权图的聚类,提出一种无向连通非加权图的快速聚类方法,该方法具有简单、聚类时间短、运行效率高、对于大型静态图的聚类具有良好的适应性等特点。 An interesting and important variant of data clustering is graph-clustering.On the one hand,the similarity between data objects in data set is often expressed by a graph.On the other hand,there is a growing interest in large complex network analysis.Further more,clustering can strengthen graphs' visibility and contribute to visual analysis,observation and navigation.This paper explores to apply the max-min approach to clustering undirected and connected graphs without weights,and provides a new algorithm with the characteristics of simplicity,high efficiency and excellent fitness to clustering large static graphs.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第7期179-181,共3页 Computer Engineering and Applications
基金 山西省自然科学基金(the Natural Science Foundation of Shanxi Province of China under Grant No.2007011043)
关键词 聚类 图形聚类 最大最小聚类方法 非加权图 clustering graph-clustering max-rain clustering method unweighted graph
  • 相关文献

参考文献15

  • 1Huang Xiaodi,Eades P,lai Wei.A framework of filtering,clustering and dynamic layout graphs for visualization[C]//Australian Computer Society,28th Australian Computer Science Conference,2005.
  • 2Mishra N,Motwani R.Central clustering of attributed graphas[D]. Germany:Technical of Berlin,2004.
  • 3Dhillon I S,Guan Y,Kulis B.Kernel k-means,spectral clustering and normalized cuts[C]//KDD' 04, Seattle, Washinton, USA, 2004.
  • 4Bunke H,Foggia P,Guidobaldi C,et al.Graph clustering using the weighted minimum common supergraph[C]//Hancock E,Vento M. Graph Based Representations in Pattern Recognition.LNCS 2726: 4th IAPR International Workshop.Berlin:Springer-Verlag,2003.
  • 5Gunter S,Bunke H.Self-organizing map for clustering in the graph domain[J].Pattern Recognition Letters,2002,23:401-417.
  • 6Battista G D,Eades P,Tamassia R,et al.Graph drawing:algorithms for the visualization of graphs[M].New Jersey:Prentice Hall,1999.
  • 7Gershon N D,Eick S G.Information visualization[J].IEEE Computer Graphics and Application, 1997,7-8:29-31.
  • 8Card S,Mackinlay J,Shneiderman B.Readings in information visualization:using vision to think[M].San Fransisco:Morgan Kaufmann, 1999.
  • 9Gunter S,Bunke H.Adaptive self-organizing map in the graph domain[C]//Bunke H,Kandel A.Hybrid Methods in Pattern Recognition.NY : World Scientific, 2002.
  • 10Luo B,Wilson R C,Hancock E R.Spectral embedding of graphs[J]. Pattern Recognition, 2003,36(10) : 2213-2223.

共引文献69

同被引文献5

  • 1Jeh G, Widom J. SimRank.. a measure of structural- context similarity[C] ff Proc 2002 ACM SIGKDD Int Conf on Knowledge Discovery and DataMining, Edmonton,Canada: ACM, 2002 : 538-543.
  • 2Shi J, Malik J. Normalized cuts and image segmenta tion[J]. IEEE Trans attern Analysis and Machine Intelligence, 2000 : 888-905.
  • 3Pons P, Latapy M. Computing communities in large networks using random walks[J]. Journal of Graph Algorithms and Applications, 10(2):191-218,2006.
  • 4王慧,申石磊.一种改进的特征加权K-means聚类算法[J].微电子学与计算机,2010,27(7):161-163. 被引量:12
  • 5史变霞,张明新.一种改进的层次聚类算法[J].微电子学与计算机,2010,27(12):55-56. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部