期刊文献+

一种基于层次树的高效密度聚类算法 被引量:4

A high-efficiency density clustering algorithm based on a hierarchical tree
下载PDF
导出
摘要 基于密度的聚类算法具有挖掘任意形状聚类和处理"噪声"数据等优势,同时也存在时间消耗大、参数问题局限及输入顺序敏感等缺陷。为此,文章提出一种基于层次树的密度聚类算法DCHT(Density Cluste-ring Based on Hierarchical Tree),以层次树描述子聚类信息,动态调整密度参数,基于密度探测树结构中相邻子聚类得到最终的聚类簇。理论分析和实验结果表明,该算法适用于大规模、高维数据,并具有动态调整参数和屏蔽输入顺序敏感性的优点。 Density-based clustering methods have the advantages such as clustering with arbitrary shapes and handling noise, which also have disadvantages in its long time consumption, parameter tuning and sensitivity of input order. In this paper, a new clustering algorithm called DCHT (Density Clustering Based on a Hierarchical Tree) is presented that constructs a hierarchical tree to describe the sub-clusters. The natural clusters are discovered by tuning density parameter dynamically and detecting adjacent sub-clusters of the tree. Both theoretical analysis and experimental results indicate that the DCHT algorithm with the advantages of tuning parameter dynamically and shielding the sensitivity of input order is suitable for mining large-scaled and high dimensional database.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期187-190,195,共5页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(050420207) 合肥工业大学科研发展基金资助项目(050504F) 安徽省高校教师资助计划项目(2005jq1012)
关键词 数据挖掘 聚类 基于密度聚类 输入顺序敏感性 data mining clustering density-based clustering sensitivity of input order
  • 相关文献

参考文献10

  • 1蔡颖琨,谢昆青,马修军.屏蔽了输入参数敏感性的DBSCAN改进算法[J].北京大学学报(自然科学版),2004,40(3):480-486. 被引量:39
  • 2Ankerst M, Bruenig M, Kreigel H P. OPTICS.. ordering points to identify the clustering structure [C]// Proceedings of ACM SIGMOD International Conference on Management of Data. Philadelphia: ACM Press, 1999:49-60.
  • 3Brecheisen S, Kriegel H P, Pfeifle M. Multi-step density- based clustering [J]. KAIS, 2006, 3(9):76-79.
  • 4倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 5周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 6Ester M, Kriegel H P, Sander J. DBSCAN: a densitybased algorithm for discovering clusters in large spatial databases with noise [C]//Proceedings of International Conference on Knowledge discovery and Data Mining. Massachusetts:AAAI Press, 1996: 226-232.
  • 7Zhang Tian, Ramakrishnan R, Livny M BIRCH: an efficient data clustering method for very large databases [C]// Proceedings of ACM SIGMOD Conference on Management of Data. Montreal, Canada: ACM Press, 1996 : 103-114.
  • 8Stonebreaker M, Frew J, Gardels K. The SEQUOIA 2000 storage benehmark [C]//ACM SIGMOD International Conference on Management of Data. Washington, DC, 1993: 2-11.
  • 9Agrawal R D, Gehrke J D, Gunopulos D D. Automaticsubspaee clustering of high dimensional data [J]. Data Mining and Knowledge Discovery, 2005,11 (1) : 5-33.
  • 10Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases [C]//Haas LM, Tiwary A. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998: 73-84.

二级参考文献20

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2Sheikholeslami G,Proceedings of the 2 4th VL DB Conference,1998年,428页
  • 3Zhang W,Proceedings of the 2 3rd VL DB Conference,1997年,186页
  • 4Chen M S,IEEE Transactions on Knowledge andData Engineering,1996年,8卷,6期,866页
  • 5Ester M,Proceedings of the 2nd International Conference on Knowledge Discovering in Data,1996年,226页
  • 6Zhang T,Proceedings of the ACM SIGMOD International Conference on Management of Data,1996年,103页
  • 7Ng R T,Proceedings of the2 0 th VL DB Conference,1994年,144页
  • 8Ester M, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. the 2nd Int'l Conf. Knowledge Discovering in Databases and Data Mining(KDD 96). Menlo Park, CA: AAA I Press, 1996.
  • 9Zhan W, et al. STING: A statistical information grid approach to spatial data mining. In: Proc. the 23rd VLDB Conf. Athens. San Francicso: Morgan Kaufmann, 1997. 186~ 195.
  • 10K. Beyer, J. Goldstein, R. Ramakhrisnan, et al. Nearest neighbor' meaningful. In: Proc. the 7th Int'l Conf. Database Theory ( ICDT' 99), http://citeseer.ist.psu.edu/605885.html,1999.

共引文献94

同被引文献40

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部