期刊文献+

粗糙核k-means聚类算法 被引量:15

Rough Kernel k-means Clustering Algorithm
原文传递
导出
摘要 通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。 By means of analyzing kernel clustering algorithm and rough set theory, a novel clustering algorithm, Rough kernel k-means clustering algorithm, was proposed for clustering analysis. Through using Mercer kernel functions, samples in the original space were mapped into a high-dimensional feature space, which the difference among these samples in sample space was strengthened through kernel mapping, combining rough set with k-means to cluster in feature space. These samples were assigned into up-approximation or low-approximation of corresponding Clustering centers, and then these data that were in up-approximation and low-approximation were combined and to update cluster center. Through this method, clustering precision was improved, clustering convergence speed was fast compared with classical clustering algorithms. The results of simulation experiments show the feasibility and effectiveness of the kernel clustering algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期921-925,共5页 Journal of System Simulation
基金 国家自然科学基金(60472072) 陕西理工学院科研项目(SLG0631)
关键词 核方法 核聚类算法 K-MEANS 粗糙集 粗糙聚类 kernel methods kernel clustering algorithm k-means rough set rough clustering
  • 相关文献

参考文献21

  • 1Rui Xu. Donald Wunsch II. Survey of clustering algorithm [J]. IEEE transaction on neural networks (S1045-9227), 2005, 10(3): 645-678.
  • 2Mac Queen J. Some methods for classification and analysis of multivariate observations [C]// LeCam L M, Neyman J eds., Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probabilit, Berkeley: University of California Press, 1967: 281-297.
  • 3Kim T, Bezbek J C. Optimal tests for the fixed points of the fuzzy C-means algorithms [J]. Pattern Recognition (S0031-3203), 1988, 31: 651-663.
  • 4S Guha, R Rastogi, K Shim. CURE: An efficient clustering algorithm for large databases [C]// Proc. ACM SIGMOD Int. Conf. Management of Data,, Seattle, Washington: ACM Press, 1998: 73-84.
  • 5Kaufmann L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis [M]. New York: Lohn Wiley & Sons, 1990: 67-89.
  • 6Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes [J]. Informatic Systems (S1746-0980), 2000, 25(5): 345-366.
  • 7G Karypis, E Han, V Kumar. Chameleon: Hierarchical cluster in gusing dynamic modeling [J]. IEEE Computer (S0018-9162), 1999, 32(8): 68-75.
  • 8T Zhang, R Ramakrishnan, M Livny. BIRCH: An efficient data clustering method for very large databases [C]// Proc. of the 15^th ACM SIGMOD Int'l Conf. on Management of Data, Montrel: ACM Press, 1996: 103-114.
  • 9Ester M, Kriegel H P, Sander J, et al. A density- based algorithm for discovering clusters in large spatial databases with noise [C]// Simoudis E, Han J W, Fayyad U eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining, KDD96. Menlo Park: AAAI Press, 1996: 226-231.
  • 10Ankerst M, Breuing M, Kriegel H P, et al. OPTICS: Ordering points toidentify the clustering structure [C]// Delis A, Faloutsos C, Ghandeharizadeh S eds. Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data, 1999 ACM SIGMOD. New York: ACM Press, 1999: 46-60.

二级参考文献14

  • 1杨燕,靳蕃,Mohamed Kamel.一种基于蚁群算法的聚类组合方法[J].铁道学报,2004,26(4):64-69. 被引量:39
  • 2[1]Vapnik V N. The Nature of Statistical Learning Theory. Springer Verlag New York, 1995
  • 3[2]Scholkopf B, Smola A, Muller K. Non-linear Component Analysis as a Kernel Eigenvalue Problem. Neural Network,1998:1299-1319
  • 4[3]Muller K, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms. IEEE Trans. on Neural Networks ,2001
  • 5[4]Sch lkopf B. The Kernel Trick for Distances. Technical Report MSR- TR-2000-51, 19 May 2000.
  • 6J Fwilson. A fuzzy logic multisensor association algorithm [Z]. SPIE, 1997, 3068: 76-78.
  • 7S Guha, R Rastogi, K Shim. Cure: An efficient clustering algorithm for large database [Z]. In Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data, 73-84, Seattle, WA, 1998.
  • 8M Ester, H P Kriegel, J Sander, X Xu. A density-based algorithm for discovering clusters in large spatial databases [Z]. In Proc. 1996 Int.Conf. Knowledge Discovery and Data Mining (KDD'96). 226-231, Portland, OR, 1996.
  • 9李进军.舰艇编队C3I系统对空中目标敌我属性识别模型研究[Z]..未来战争与军事系统工程[C].北京: 军事科学出版社,2003.160-163.
  • 10Wu B,Shi Z.A.clustering algorithm based on swarm intelligence[C]// In:Proceedings IEEE international conferences on info-tech & info-net proceeding.Beijing.2001.

共引文献250

同被引文献189

引证文献15

二级引证文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部