期刊文献+

基于粗糙集与证据理论的决策规则合成方法 被引量:6

Rough Sets and Evidence Theory-based Method to Combine Decision Rules
原文传递
导出
摘要 如何根据规则进行决策是决策规则应用必须解决的核心问题之一。针对该问题,提出了一种决策规则的合成方法,为根据多条规则进行决策提供了崭新的思路。首先,获取规则,计算支持度、信度等信息;然后,将规则信度转换为可信度分配,综合属性重要性和规则支持度两方面因素,计算可信度分配的权重;最后,运用证据理论对可信度分配进行合成。实验表明,规则合成方法能够对决策规则,尤其是冲突规则进行有效合成,得出可靠的决策。 A combination method to make decision using decision rules was proposed. The method which took advantage of the information derived from the process of rule extraction gave a new idea to make decision according to decision rules. First, rule extraction methods were employed to obtain decision rules and their support and confidence degrees. Second, the basic probability assignments were calculated according to the confidence degrees of rules. Then, the attribute significances and support degrees of rules were considered to compute the evidence weights. Last, the combination method of evidence theory was used to obtain the aggregated decision. The experiment shows that the combination method performs well to combine decision rules, especially conflicting rules.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期951-955,共5页 Journal of System Simulation
基金 国家自然科学基金项目(70672097) 国家自然科学基金重点项目(70631003) 合肥工业大学研究生科技创新基金(038902)
关键词 决策规则 粗糙集 证据理论 合成方法 decision rule rough sets evidence theory combination method
  • 相关文献

参考文献11

  • 1Shyng J Y, Wang F K, Tzeng G H, et al. Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market [J]. Expert Systems with Applications (S0957-4174), 2007, 32(1): 56-64.
  • 2张登峰,王执铨.故障特征选择与诊断规则提取的VPRS模型方法[J].系统仿真学报,2003,15(6):793-796. 被引量:13
  • 3Mollestad T, Skowron A. A Rough Set Framework for Data Mining of Propositional Default rules [C]// Proceedings of the 9th International Symposium on Foundations of Intelligent Systems (ISMIS), 1996. Berlin: Springer-Verlag, 1996: 448-457.
  • 4管延勇,薛佩军,王洪凯.不完备信息系统的可信决策规则提取与E-相对约简[J].系统工程理论与实践,2005,25(12):76-82. 被引量:22
  • 5Thabtah F, Cowling P, Peng Y. A Study of Predictive Accuracy for Four Associative Classifiers [J]. Journal of Digital Information Management (S0972-7272), 2005, 3(3): 209-212.
  • 6王国胤,刘锋,吴渝,聂能.Rough集规则知识获取研究中的不一致性问题[J].重庆邮电学院学报(自然科学版),2000,12(3):16-21. 被引量:11
  • 7Liu B, Hsu W, Ma Y. Integrating Classification and Association Rule Mining [C]// Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), New York. New York: ACM Press, 1998:27-31.
  • 8Thabtah F, Cowling P, Hammound S. Improving Rule Sorting, Predictive Accuracy and Training Time in Associative Classification [J]. Expert Systems with Applications (S0957-4174), 2006, 31(2): 414-426.
  • 9Yang J B, Wang Y M, Xu D L, et al. The Evidential Reasoning Approach for MADA under both Probabilistic and Fuzzy Uncertainties [J], European Journal of Operational Research (S0377-2217), 2006, 171(1): 309-343.
  • 10Nguyen H S, Skowron A. Quantization of Real-Valued Attributes [C]// Proceedings of the 2nd International Joint Conference on Information Sciences, 1995. Berlin: Springer-Verlag, 1995: 34-37.

二级参考文献18

  • 1Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Science, 1982, 11(5): 341-356.
  • 2Pawlak Z, Busse J G, Slowinsld R, et al. Rough Sets[J]. Communication of the ACM. 1995, 38(11): 89-95.
  • 3Ziarko W. Variable Precision Rough Set Model [J]. Journal of Computer and System Science, 1993, 46(1): 39-59.
  • 4Zhang Wenxiu, Wu Weizhi, Liang Jiye, et al. Rough Sets Theory and Methods [M]. Beijing: Science Press, 2001.
  • 5Wong S K M, Ziarko W. On Optimal Decision Tables in Decision Tables [J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 1985, 33: 694-696.
  • 6Nowicki R, Slowinski R, Stefanowski J. Evaluation of Vibroacoustic Diagnostic Symptoms by Means of the Rough Sets Theory [J].Computers in Industry, 1992, 20(2): 141-152.
  • 7Zhong N, Dong J, Ohsuga S. Using Rough Sets with Heuristics for Feature Selection [J]. Journal of Intelligent Information Systems,2001, 16(2): 199-214.
  • 8Bian Zhaoqi. Pattern Recognition [M]. Beijing: Tsinghua University Press, No.2 edition, 2000.
  • 9刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 10Pawlak Z. Rough sets[ J] . International Journal of Computer and Information Sciences, 1982, 11 : 341 - 356.

共引文献43

同被引文献112

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部