期刊文献+

基于LLE和SVM的人像识别方法 被引量:13

Face Recognition Based on LLE and SVM
下载PDF
导出
摘要 在人像识别方面,传统的特征提取方法大都是线性的,不能很好地保持样本的拓扑结构。支持向量机能提高学习的泛化能力,防止过学习,是一种很好的分类器。为此,提出一种增强的LLE(Locally Linear Em- bedding)和SVM(support Vector Machine)结合的人像识别方法,采用PCA(Principal Component Analysis)与LLE相结合算法,对光照归一化处理过的人脸图像进行特征提取,利用SVM的分类机制对人脸图像样本集进行训练和识别。在ORL(Olivetti Research Laboratory)人脸数据库上实验表明,该算法稳健、快速,识别率达到了90%以上。 For face recognition, most of the traditional methods which reduce the high dimensional data are linear. Support vector machine can enhance the generation ability of study, and can overcome the disadvantage of overfitting. The paper proposes a method for face recognition using the enhanced LLE (Locally Linear Embedding) and SVM (Support Vector Machine). After extracting the features of the pre-processing face images using PCA ( Principal Component Analysis) and LLE, we train the feature sets and recognize the faces with the classification methods of SVM. Experiment results on ORL (Olivetti Research Laboratory) database demonstrate that the algorithm is effective.
出处 《吉林大学学报(信息科学版)》 CAS 2008年第1期48-54,共7页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划重点基金(20060330)
关键词 人脸识别 局部线性嵌入 主成分分析法 支持向量机 face recognition locally linear embedding (LLE) principal component analysis (PCA) support vector machine (SVM)
  • 相关文献

参考文献12

  • 1张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:259
  • 2PENG Hui, ZHANG Chang-shui, RONG Gang. Automatic Face Recognition Based on K-L Transformation [ J]. Journal of Tsinghua University, 1997, 37 (3) : 67-70.
  • 3BARTLETT M S, SEJNOWSKI T J. Independent Components of Face Images : A Representation for Face Recognition [ C ] // Proceedings of the Fourth Annual Joint Symposium on Nerval Computation Pasadena. Pasadena: [ s. n. ], 1997, CA: 17.
  • 4MIKA S, RATSCH G, WESTON J MULLER, et al. Fisher Discriminant Analysis with Kernels [ C] //Proceedings of IEEE Neural for Signal Proceeding Workshop. [S. l. ] : IEEE, 1999: 41-48.
  • 5ROWEIS S, SAUL L. Nonlinear Dimensionality Reduction by Locally Linear Embedding [ J ]. Science, 2000, 290 (5500) : 2323 -2326.
  • 6DICK DE RIDDER, ROBERT P W DUIN. Locally Linear Embedding for Classification [ R ]. Pattern Recognition Group Technical Report Series. [ S. l. ] : Faculty of Applied Science, Delft University of Technology, 2002 : 1-12.
  • 7TENENBAUM J B, DE SILVA V, LANGFORD J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science, 2000, 290 (5500) : 2319-2322.
  • 8CORTES C, VAPNIC V. Support Vector Networks [ J]. Machines Learning, 1995, 20 (1) : 1-25.
  • 9BURGES C J C. A Tutorialon Support Vector Machines for Pattern Recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 1-48.
  • 10GUNN S. Support Vector Machines for Classification and Regression [ R]. Southampton: University of Southampton, 1998: 1-66.

二级参考文献3

共引文献303

同被引文献157

引证文献13

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部