摘要
为了对GFRP(玻璃纤维增强塑料)拉挤成型非稳态温度场与固化度进行数值模拟,依据固化动力学和非稳态导热理论,建立了温度场和固化度动力学模型。通过DSC试验分析确定了模型中固化度动力学参数。利用有限元与有限差分相结合的方法,建立温度场和固化度数值模型,应用Euler-Cauch逐步迭代法实现计算机解耦。利用有限元软件FEPG编制拉挤固化模拟程序,详细探讨了模具温度、拉挤速度、初始温度等拉挤工艺参数对模具内温度和固化度分布的影响。数值模拟值与FBG光栅测量值比较结果吻合,能够对拉挤工艺参数制定提供有用的信息,以指导拉挤工艺制定。
In order to carry out a numerical simulation of the unstable temperature field and curing degree in the pultrusion process of GFRP, a mathematical model was established for the variation of temperature distribution and curing degree on the basis of curing kinetic and unstable thermal conduction theories. The kinetics parameters based on the models are determined by using differential scanning calorimetry (DSC). A numerical model was established for the temperature and curing degree by combining the two-dimensional finite element with finite differential and the coupled question was solved by using Euler - Cauch step- by- step iterative method. The effects of processing parameters including pulling speed, die wall temperature and initial temperature on the profile of curing degree and temperature in the die are discussed with the pultrusion simulation program compiled with FEPG. The result of the numerical simulation corresponds well to the FBG sensor test result, which provides useful information for the pultrusion design.
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2008年第1期46-51,共6页
Acta Materiae Compositae Sinica
基金
辽宁省自然科学基金项目(20044002)
国防“十一五”基础科研项目(2005A352060215)
关键词
GFRP
拉挤成型
数值模拟
非稳态温度场
固化度
GFRP
pultrusion process
numerical simulation
unstable temperature field
curing degree