期刊文献+

噪声鲁棒的分水岭网格分割算法 被引量:12

Noise Robust Watershed Mesh Segmentation Algorithm
下载PDF
导出
摘要 提出一种对逆向工程网格噪声鲁棒的分水岭分割算法.该算法在计算网格离散曲率时,针对曲率计算对网格噪声特别敏感的问题,根据拟合曲面的曲面误差估计,动态地调整拟合曲面的顶点个数,提高了曲率计算的精确性,增强了基于曲率的分水岭算法对噪声的鲁棒性;通过后续的标识、聚类和分割后处理方法,提高了算法的分割精度和效果.该算法在大量的噪声网格模型上获得了较好的分割结果,适用于逆向工程中的二次曲面识别和NURBS曲面逼近. This paper proposes a watershed mesh segmentation algorithm which is designed to be robust to mesh noise. The calculation of discrete curvature will evaluate the error of approximating surface and adjust the number of approximating vertices dynamically. A series of subsequent marking and clustering heighten the effect and precision of mesh segmentation in existence of noise. The algorithm achieves satisfying results on a considerable of models corrupted by noise. The segmentation results are proper for quadric surface identification and NURBS approximating in reverse engineering.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第3期310-315,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60473106) 教育部博士点基金(20060335114).
关键词 网格分割 噪声鲁棒 误差估计 动态调整 mesh segmentation noise robust error evaluation dynamical adjust
  • 相关文献

参考文献14

  • 1孙晓鹏,李华.三维网格模型的分割及应用技术综述[J].计算机辅助设计与图形学学报,2005,17(8):1647-1655. 被引量:49
  • 2Mangan A, Whitaker R. Surface segmentation using morphological watersheds [ C ].Proceedings of IEEE Visulization'98, Chapel Hill, North Carolina, 1998:29-32.
  • 3Mangan A, Whitaker R. Partitioning 3D surface meshes using watershed segmentation [J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4) : 308-321.
  • 4Meyer M, Desbrun M, Schroder P, et al. Discrete differentialgeometry operators for triangulated 2-manifolds [M].Visualization and Mathematics Ⅲ, Heidelberg. 2003:35-58.
  • 5Wu K, Levine M D. 3D part segment using simulated electrical charge distributions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(11): 1223-1235.
  • 6Pulla S, Razdan A, Farin G. Improved curvature estimation for watershed segmentation of 3-dimensional meshes [R]. Tempe, AZ: Arizona State University, 2001.
  • 7Goldfeather J, Interrante V. A novel cubic-order algorithm for approximating principal direction vectors [J]. ACM Transactions on Graphics, 2004, 23(1): 45-63.
  • 8Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation [ C ] .Proceedings of International Conference on Computer Vision, Cambridge, 1995:902-907.
  • 9Vonmer J, Mencl R, Muller H. Improved Laplacian smoothing of noisy surface Meshes [J]. Computer Graphics Forum, 1999, 18(3): 131-138.
  • 10Desbrun M, Mayer M, Schoroder P, et al. Anisotropic featurepreserving de-noising of height fields and bivariate data [C]. Graphics Interface, Quebec, 2000:145-152.

二级参考文献61

  • 1Sebastian T B, Klein P N, Kimia B. Recognition of shapes by editing shock graphs [A]. In: Proceedings of IEEE International Conference on Computer Vision, Vanconver,2001. 755~762.
  • 2Sethian J A. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M].Cambridge: Cambridge University Press, 2000.
  • 3Edelsbrunner H, Letscher D, Zomorodian A. Topological persistence and simplification [A]. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science,Redondo Beach, California, 2000. 454~463.
  • 4Hoppe H. Progressive meshes [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,New Orleans, Louisiana, 1996. 99~108.
  • 5Bischoff S, Kobbelt L. Towards robust broadcasting of geometry data [J]. Computers & Graphics, 2002, 26(5): 665~ 675.
  • 6Zuckerberger E, Tal A, Shlafman S. Polyhedral surface decomposition with applications [J ]. Computers & Graphics,2002, 26(5): 733~743.
  • 7Garland M, Willmott A, Heckbert P. Hierarchical face clustering on polygonal surfaces [A]. In: Proceedings of ACM Symposium on Interactive 3D Graphics, Research Triangle Park, North Carolina, 2001. 49~58.
  • 8Praun Emil, Hoppe Hugues, Finkelstein Adam. Robust mesh watermarking [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, Los Angeles,California, 1999. 49~56.
  • 9Krishnamurthy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH, New Orleans,Louisiana, 1996. 313~324.
  • 10Lee W, Sweldens P, Schroder L, et al. MAPS: Multiresolution adaptive parameterization of surfaces [A]. In:Computer Graphics Proceedings, Annual Conference Series,ACM SIGGRAPH, Orlando, Florida, 1998. 95~104.

共引文献48

同被引文献195

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部