Noether's and Poisson's methods for solving differential equation x_s^((m))=F_s(t,x_k^((m-2)) ,x_k^((m-1)))
Noether's and Poisson's methods for solving differential equation x_s^((m))=F_s(t,x_k^((m-2)) ,x_k^((m-1)))
摘要
This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.
This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.
基金
Project supported by the National Natural Science Foundation of China(Grant No10572021)
Doctoral Programme Foundation of Institution of Higher Education of China(Grant No20040007022)
参考文献15
-
1Whittaker ET 1937 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies 4th edn (Cambridge: Cambridge University Press).
-
2Chen B 1987 Analytical Dynamics (Beijing: Peking University Press).
-
3Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press).
-
4Santilli R M 1978 Foundations of Theoretical Mechanics (New York: Springer).
-
5Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetries (Beijing: Beijing University of Technology Press).
-
6Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press).
-
7Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) .
-
8Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) .
-
9Shang M and Mei F X 2005 Chin. Phys. 14 1707.
-
10Wu H B and Mei F X 2005 Chin. Phys. 14 2391.
-
1崔静静,陆全,徐仲,安晓虹.非奇异H-矩阵的一组判定条件[J].工程数学学报,2016,33(2):163-174. 被引量:3
-
2K.Marathe,陈涛.物理数学专讲[J].国外科技新书评介,2011(11):1-2.
-
3黄政阁,徐仲,陆全,崔静静.非奇H-矩阵的一组新的判定条件[J].高等学校计算数学学报,2016,38(4):330-342. 被引量:2
-
4赵树松,潘留仙.量子场论的数学物理与物理数学[J].益阳师专学报,1995,12(5):1-4.
-
5温复振.物理教学中“激发兴趣启发思维”的体会[J].阴山学刊(自然科学版),1994,13(1):122-125.
-
6肖光明,周克省.复数在振动与波动学研究中的应用[J].益阳师专学报,2000,17(5):61-63.
-
7王金国,靳泮涛.“半波损失”浅析──物理教学中的一个问题[J].河北农业大学学报,1994,17(1):84-87. 被引量:3
-
8朱永忠.普通物理课程对学生能力的培养之管见[J].安庆师范学院学报(自然科学版),1998,4(1):76-80.
-
9许显麟.如何在初中物理教学中培养学生的思维能力[J].新课程学习,2013(10):142-142.
-
10《数学物理学报》中、外文征稿简则[J].数学物理学报(A辑),2010,30(5).