期刊文献+

图的{P_(4)}—分解 被引量:3

The {P_(4)}—Decomposition of Graphs
下载PDF
导出
摘要 一个图G的路分解是指一路集合使得G的每条边恰好出现在其中一条路上.记P_(l)长度为l-1的路,如果G能够分解成若干个P_(l),则称G存在{P_(l)}—分解.关于图的给定长路分解问题主要结果有:(i)连通图G存在{P_(3)}—分解当且仅当G有偶数条边(见[1]);(ii)连通图G存在{P_(3),P_(4)}—分解当且仅当G不是C3和奇树,这里C_(3)的长度为3的圈而奇树是所有顶点皆度数为奇数的树(见[3]).本文讨论了3正则图的{P_(4)}—分解情况,并构造证明了边数为3k(k热∈Z且k≥2)的完全图Kn和完全二部图Kr,s存在{P_(4)}—分解. A path decomposition of a graph G is a set of paths such that each edge of G is exactly in one path.A path with length l-1 is denoted by P_(t).G is said to have{P_(l)}--decomposition if G can be decomposed into several Pi.The following are some main results concerning path decomposition:(i)a connected graph G has{P_(3)}-decomposition if and only if G has even number of edges(see[1]);(ii)a connected graph G has{P_(3),P_(4)}-decomposition if and only if G isn't C_(3) or odd tree,where C_(3) is a cycle of length three and odd tree is a tree in which all vertices have odd degrees(see[3]).This paper discusses the{P_(4)}--decompositions of 3--regular graphs,then constructs the(P4)--decompositions of complete graph Kn and complete bipartite graph Kr,s with 3k number of edges.
作者 翟明清 叶永升 ZHAI Ming—qing;YE Yong—sheng(Department of Mathematics,Chuzhou University,Chuzhou 239012,China;Department of Mathematics,Huaibei Coal Industry Teachers College,Huaibei,Anhui 235000,China;Department of Mathematics,East China Normal University,Shanghai 200241,China)
出处 《大学数学》 北大核心 2008年第1期75-78,共4页 College Mathematics
基金 安徽省教育厅自然科学基金(KJ2007B124,2006KJ085B)
关键词 路分解 {P_(4)}--分解 graph path decomposition {P_(4)}-decompositions
  • 相关文献

参考文献1

二级参考文献3

  • 1[1]Bondy J A and Murty U R. Graph Theory with Applications. The Macmillan Press, London, 1976.
  • 2[2]Donald A. An upper bound for the path number of a graph. J. Graph Theory, 1980, 4: 189-201.
  • 3[3]Reed B. Paths, Stars and the Number tree. Combinatorics, Probability and Computing, 1996, 5:277-295.

共引文献9

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部