期刊文献+

基于动态阈值对称差分和背景差法的运动对象检测算法 被引量:28

New algorithm for detecting moving object based on adaptive background subtraction and symmetrical differencing
下载PDF
导出
摘要 提出一种基于动态阈值对称差分和背景差法的运动对象检测算法。首先通过建立一个基于统计的可靠背景更新模型,由背景差法得到基本准确的前景图像;然后与用对称差分法得到的差分图像综合;最后得到完整可靠的运动目标图像。中间采用了一种动态的最优阈值获取方法,然后用形态学滤波和连通区域面积检测进行后处理,以消除噪声和背景扰动带来的影响,并用区域填充算法来填补目标区域的小孔,从而将视频序列中的运动目标比较可靠地检测出来。实验结果表明,该方法快速、准确,有一定的实际应用价值。 A novel algorithm for moving detection, which employed adaptive background subtraction and symmetrical differencing method, was presented. A modified selective updating model was proposed as the reliable adaptive statistical background updating method, and the background subtraction was combined with symmetrical differencing to detect moving information. This paper also presented a dynamic optimization threshold method for image. After the motion detection operation, morphologic filtering and connected region area measurement were introduced to suppress the noise and solve the background disturbance problem. Then the area filling algorithm was used to fill the small hole in the detected object, Finally the moving objects were extracted reliably, The experiment result shows that the presented algorithm run quickly and veraciously.
作者 陈磊 邹北骥
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期488-490,494,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60573079,60673093)
关键词 背景差 对称差分 背景模型 运动检测 background subtraction symmetrical differencing background model moving object detection
  • 相关文献

参考文献2

二级参考文献29

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献126

同被引文献211

引证文献28

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部