期刊文献+

染色体碱基序列的联合多重分形分析 被引量:7

The Joint Multi-fractal Analysis of the Base Sequence of Chromosomes
下载PDF
导出
摘要 多重分形谱可以用于分析一条染色体碱基序列的概率分布情况,联合多重分形谱可以区分两条染色体碱基序列的概率分布之间的差异。该文将联合多重分形谱应用于实际染色体中碱基序列和随机产生碱基序列的比较分析中。实验结果表明:同一物种的不同染色体上的碱基序列可视为来自同一信源的输出;而不同物种的染色体碱基序列是由不同信源产生;且染色体碱基序列不同于随机产生的碱基序列。该方法还可以应用于其他信号的分析和模型评估中。 The multi-fractal spectrum of the DNA sequence of a chromosome reflects its probability distribution, and the joint multi-fractal spectrum of two DNA sequences can be used to discriminate their distributions. By employing joint multi-fractal spectrum to analyze the DNA sequences of chromosomes and randomly generated sequences according to predefined distributions, it has been shown that, different chromosomes of the same specie can be viewed as being generated from the same information source, and chromosomes of different species can not be thought so, but all are different from randomly generated sequences. The joint multi-fractal can also be used in other fields for signal modeling and analyzing.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第2期298-301,共4页 Journal of Electronics & Information Technology
基金 中国科学院知识创新工程重要方向基金项目(KSCX2-SW-329) 安徽省高校青年教师基金(2006jql038) 河南省自然科学基金(2006jql038) 河南省教育厅自然科学研究项目(2007520062)
关键词 离散稳恒信源 联合多重分形分析 DNA序列 Discrete stationary information sources Joint multi-fractal spectrum analysis DNA sequences
  • 相关文献

参考文献8

  • 1Yu Z G, Anh V, and Lau K S. Measure representation and multifractal analysis of complete genomes. Phys. Rev. E, 2001, 64(3): 031903-031912.
  • 2朱雪龙.应用信息论基础[M].北京:清华大学出版社,1993..
  • 3Cover T M and Thomas J A. Elements of Information theory. Beijing: Tsinghua University Press, Nov. 2003: 1-50.
  • 4陈双平,郑浩然,刘金霞,童庆,王煦法.离散稳恒信号的多重分形谱的计算及其应用[J].电子与信息学报,2007,29(5):1054-1057. 被引量:2
  • 5Meneveau C, Sreenivasan K R, Kailasnath P, and Fan M S. Joint multifractal measures: Theory and applications to turbulence. Phys. Rev. A, 1990, 41(2): 894-913.
  • 6Kravchenko A N, Bullock D G, and Boast C W. Joint multifractal analysis of crop yield and terrain slope. Agron J, 2000, 92(6): 1279-1290.
  • 7Zeleke T B and Si B C. Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agron J, 2004, 96(4): 1082-1090.
  • 8Francois Schmitt S L and Schertzer D. Multifractal analysis of foreign exchange data. Applied Stochastic Models and Data Analysis, 1999, 15(1): 29-53.

二级参考文献7

  • 1陈双平,郑浩然,马猛,张振亚,王煦法.用统计物理的方法计算信源熵率[J].电子与信息学报,2007,29(1):129-132. 被引量:3
  • 2朱雪龙.应用信息论基础[M].北京:清华大学出版社,1993..
  • 3Rabiner L R.A tutorial on hidden Markov models and selected applications in speech recognition.Proc.of the IEEE,1989,77(2):257-286.
  • 4Durbin R,Eddy S,Krogh A,and Mitchison G.Biological Sequence Analysis:Probabilistic Models of Proteins and Nucleic Acids.London:Cambridge University Press,1998,chapter 3.
  • 5Chen Huiping,Sun Xia,Chen Huixuan,and Wu Ziqin,et al..Some problems in multifractal spectrum computation using a statistical method.New J.Phys.,2004,60 (1):84-100.
  • 6Mach J,Mas F,and Sagues F.Two representations in multifractal analysis.Journal of Physics A:Mathematical and General,1995,28(19):5607-5622.
  • 7周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性I.经典Renyi定义法[J].华东理工大学学报(自然科学版),2000,26(4):385-389. 被引量:27

共引文献4

同被引文献75

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部