期刊文献+

组织工程血管支架材料最适孔径的研究 被引量:2

Optimal pore caliber of scaffolds for tissue engineering vessel
原文传递
导出
摘要 目的筛选组织工程血管支架材料的最适孔径。方法用生物可降解材料聚β羟基丁酯(PHB)作为支架材料,运用盐析方法制成实心和不同孔径的膜片;将培养的第3代血管平滑肌细胞种植于膜片上,于培养的第1、3、7、11、14天,采用倒置显微镜下观察、苏木素-伊红(HE)染色、甲苯胺蓝染色、扫描电镜检查及噻唑蓝(MTT)比色法检测查明材料上细胞附着和生长情况。结果倒置显微镜下无法观察附着于材料上的细胞;HE和扫描电镜标本制备过程中细胞丢失多,其不能为材料提供准确的信息;甲苯胺蓝染色可快速观察材料上细胞附着情况;MTT比色法可定量测定材料上的细胞数。经比较发现150—200μm孔径的PHB膜片上血管平滑肌细胞附着和生长最佳。结论150—200μm孔径的PHB膜片最适合血管平滑肌细胞的附着和生长。 Objective To explore optimal pore caliber of scaffolds for tissue engineering vessel. Methods Scaffolds of various pore calibers were made by salt-eluting method using biodegradable poly-β- hydroxybutyrate ( PHB ). Vascular smooth muscle cells were implanted in scaffolds of various pore calibers. Scaffolds were examined bu phase-contrast microscopy, HE staining, toluidine blue staining, scanning electronic microscope and MTT method on culturing days of 1,3,7,11,14 for finding how cells grew. Resuits Scaffolds of various pore calibers were successfully made. Cells in scaffolds couldnt be seen under phase-contrast microscopy, HE staining and scanning electronic microscope couldnt provide accurate information due to cells loss during specimen preparation. Toluidine blue staining was a rapid method to observe cells in scaffolds, and MTT method could quantitatively measure cells number in scaffolds. Scaffolds with pore caliber of 150-200 μm had the most cells. Conclusion Scaffolds with pore caliber of 150-200 μm is the most suitable for tissue engineering vessel.
出处 《中华实验外科杂志》 CAS CSCD 北大核心 2008年第2期161-162,共2页 Chinese Journal of Experimental Surgery
关键词 血管 组织工程 支架 Vascular Tissue engineering Scaffold
  • 相关文献

参考文献5

二级参考文献13

共引文献36

同被引文献29

  • 1谢青松,李立新,陶轶,胡卫星,黄保胜.脑源性神经营养因子促进bHLH基因的表达和神经干细胞的定向分化[J].中国神经精神疾病杂志,2006,32(6):540-542. 被引量:11
  • 2祝畅,刘志恒,桂伶俐,高峰,张传汉.人与鼠神经干细胞体外培养特性的比较[J].中国组织工程研究与临床康复,2007,11(7):1216-1218. 被引量:2
  • 3谢青松,李立新,黄保胜,付震,胡卫星,鲁艾林.脊髓组织工程的体外构建[J].中国组织工程研究与临床康复,2007,11(10):1850-1853. 被引量:2
  • 4Tederko P,Krasuski M,Kiwerski J,et al.Repair therapies in spinal cord injuries.Ortop Traumatol Rehabil.2009; 11 (3):199-208.
  • 5Nandoe Tewarie RS,Hurtado A,Bartels RH,et al.Stem cell-based therapies for spinal cord injury.J Spinal Cord Med.2009;32(2):105-114.
  • 6Beaulieu MM,Tremblay PL,Berthed F.Tissue-engineered models of the nervous system.Med Sci.2009;25(3):288-292.
  • 7Ramin E,Harris RA.Advanced computer-aided design for bone tissue-engineering scaffolds.Proc Inst Mech Eng H.2009;223(3):289-301.
  • 8Dutta RC,Dutta AK.Cell-interactive 3D-scaffold::advances and applications.Biotechnol Adv.2009;27(4):334-339.
  • 9Teng YD,Lavik EB,Qu X,et al.Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.Proc Natl Acad Sci U S A.2002;99(5):3024-3029.
  • 10Basso DM,Beattie MS,Bresnahan JC.Asensitive and reliable locomotor rating scale for open field testing in rats.J Neurotrauma.1995;12(1):1-21.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部