期刊文献+

六价铬还原细菌Bacillus cereus S5.4的筛选鉴定及还原特性研究 被引量:8

Isolation,identification and hexavalent chromium reduction studies of Bacillus cereus S5.4
下载PDF
导出
摘要 六价铬生物毒性极大,是造成环境污染的主要重金属之一,其生物治理策略已引起了广泛关注。已经发现许多微生物具有六价铬抗性和还原性,但能工业应用的还十分有限。从宝钢电镀污泥中分离得到一系列高六价铬抗性菌株,其中一株S5.4显示出高六价铬还原性,经形态和生理生化特征及16s rDNA序列比对,鉴定为Bacillus cereus。该菌株好氧生长,在固体LB培养基上培养48h能耐受40mmol/L Cr^6+,并对Mn^2+、Ba^2+和Mo^6+也显出高抗性;在液体LB培养基中培养72h完全还原2mmol/L Cr^6+,并能在补充培养基和六价铬的条件下连续还原。该菌株还原六价铬时,最适浓度为2mmol/L Cr^6+,最适温度范围30~37℃,最适pH7~9。 Hexavalent chromium, regarded as one of the most dangerous pollutants among heavy metals in the environment for its toxicity to living organisms, is being widely studied for its bioremediation. More and more microorganisms showing steady resistance and reduction ability of hexavalent chromium were identified, but few of them were applied to industrial fields. A series of bacteria with high resistance of hexavalent chromium were isolated from the electroplating sludge of Baosteel Corporation, Shanghai. A strain named S5.4, which showed high reduction ability of hexavalent chromium, was identified as Bacillus cereus by morphological, physiological and biochemical characteristics and its 16s rDNA sequence. Under the aerobic conditions, this strain was able to grow on LB plates with 40mmol/L Cr^6+ after 48h, and also showed high endurance on Mn^2+ , Ba^2+ and Mo^6+. At the same time, this strain was able to completely reduce 2 mmol/L Cr^6+ in LB liquid after 72 h, and work continuously with supplement of cultural medium and hexavalent chromium. For reducing hexavalent chromium, the optimal concentration, temperature range and pH range were 2mmol/L Cr^6+, 30-37℃ and pH 7-9, respectively.
出处 《工业微生物》 CAS CSCD 北大核心 2007年第6期1-6,共6页 Industrial Microbiology
基金 国家自然科学基金项目(40571145)
关键词 BACILLUS CEREUS 六价铬抗性 六价铬还原性 微生物鉴定 Bacillus cereus hexavalent chromium resistance hexavalent chromium reduction microorganism identification
  • 相关文献

参考文献20

  • 1江澜.微生物治理铬污染的应用与发展[J].重庆工商大学学报(自然科学版),2006,23(2):132-135. 被引量:15
  • 2马锦民,瞿建国,夏君,李福德.失活微生物和活体微生物处理含铬(Ⅵ)废水研究进展[J].环境科学与技术,2006,29(4):103-105. 被引量:13
  • 3Carlos Garbisu, ltaziar Alkorta, MariaJ. Llama, et al. Aerobic chromate reduction by Bacillus subtilis . Biodegradation, 1998, 9(2) : 133- 141.
  • 4柴立元,龙腾发,唐宁,庄明龙,闵小波.微生物治理碱性含铬废水的试验研究[J].中南大学学报(自然科学版),2005,36(5):816-820. 被引量:24
  • 5Rene N. Horton, William A. Apel, Vicki S. Thompson, et al. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens . BMC Microbiology, 2006, 6(5): 5- 12.
  • 6M. Megharaj, S. Avudainayagam, R. Naidu. Toxicity of hexavalem chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 2003, 47(1 ) : 51-54.
  • 7Weihua Xu, Yunguo Liu, Guangming Zeng, et al. Enhancing effect of iron on chrcamte reduction by Cellulomonas flavigena . Journal of Hazardous Materials, 2005, 126(1) : 17 - 22.
  • 8Braclley M. Teo, Anna Ya. Obraztsova. Sulfate-reducing bacteriumgrowswithCr(Ⅵ), U(Ⅵ), Mn(Ⅳ) and Fe(Ⅲ) as electron acceptors. FEMS Microbiology Letters, 1998, 162 (1) : 193 - 198.
  • 9Komori K., Rivas A., Toda K., et al. Biological removal of toxic chromium using an Enterobater cloacae strain that reduces chromates under anaerobic conditions, Biotechnology & Bioengineering, 1990, 35(9) : 951-954.
  • 10P. Pattanapipitpaisal, A. N. Mabbett, J. A. Finlay, et al. Reduction of Cr( Ⅵ ) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress. Environmental Technology, 2002, 23(7): 731- 745.

二级参考文献40

  • 1汪频,李福德,刘大江.硫酸盐还原菌还原铬(Ⅵ)的研究[J].环境科学,1993,14(6):1-4. 被引量:33
  • 2冯易君,谢家理,向芹,李福德.共存离子对硫酸盐还原菌(SRB)处理含铬废水的影响研究[J].环境污染与防治,1995,17(4):15-17. 被引量:24
  • 3吴乾箐,宋颖,李昕,李福德.电镀超高浓度铬废水微生物治理工程的研究[J].水处理技术,1996,22(3):165-167. 被引量:19
  • 4Sa(g) Y,Kutsal T.The selective biosorption of chromium(Ⅵ) and copper (Ⅱ) ions from binary metal mixtures by R.arrhizus[J].Process Biochemistry,1996,31(6):561-572.
  • 5Prakasham R S,Sheno Merrie J,Sheela R,et al.Biosorption of chromium Ⅵ by free and immobilized Rhizopus arrhizus[J].Environmental Pollution,1999,104:421-427.
  • 6Ozdemir Guven,Ceyhan Nur,Ozturk Tansel,et al.Biosorption of chromium (Ⅵ),cadmium (Ⅱ) and copper(Ⅱ) by Pantoea sp.TEM18[J].Chemical Engineering Journal,2004,102:249-253.
  • 7Ozdemir Guven,Ozturk Tansel,Ceyhan Nur,et al.Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge[J].Bioresource Technology,2003,90:71-74.
  • 8Srinath T,Verma T,Ramteke P W,et al.Chromium (Ⅵ) biosorption and bioaccumulation by chromate resistant bacteria[J].Chemosphere,2002,48:427-435.
  • 9Gupta V K,Shrivastava A K,Jain N.Biosorption of chromium (Ⅵ) from aqueous solutions by green algae spirogyra species[J].Wat.Res.,2001,35(17):4079-4085.
  • 10Aksu Z,Akpinar Derya.Competitive biosorption of phenol and chromium (Ⅵ) from binary mixtures onto dried anaerobic activated sludge[J].Biochemical Engineering Journal,2001,7:183-193.

共引文献47

同被引文献89

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部