期刊文献+

使用BP网络和自适应遗传算法的某型火箭炮变发射间隔研究 被引量:4

Research on Variable Firing Interval of Certain Rocket Launcher Using BP Neural Network and Improved Adaptive Genetic Algorithm
下载PDF
导出
摘要 在建立某型火箭炮动力学模型的基础上,根据正交试验的原则,通过动力学仿真和数据处理为BP网络建立训练样本,用训练后的网络模拟发射间隔和起始扰动之间的非线性关系,将改进后的自适应遗传算法(IAGA)和BP网络结合对发射间隔进行研究和优化,得出了变发射间隔的满意解。结果表明,将BP和IAGA结合,既克服了BP优化功能的不足,又弥补了遗传算法优化时需要显式目标函数的缺陷,解决了单纯用动力学仿真不能解决的问题。优化的结果可以直接应用到该型火箭炮的发射中去。 On the base of the establishment of a certain rocket launcher model, some samples for training the BP neural network were got by using an orthogonal experimental method through the dynamical simulation. The trained neural network could simulate the nonlinear relation between firing interval and initial disturbance. The firing interval was studied and optimized to obtain a reasonable result using the improved adaptive genetic algorithm(IAGA) in conjunction with BP neural network. The results indicate that the cooperation of BP and IAGA can resolve a certain question which is not successfully resolved simply using the dynamical simulation. The optimized result can be used in the firing of a certain rocket launcher.
出处 《兵工学报》 EI CAS CSCD 北大核心 2007年第11期1287-1292,共6页 Acta Armamentarii
关键词 机械学 BP网络 遗传算法 自适应 变发射间隔 优化 火箭炮 mechanics BP neural network genetic algorithm adaptive variable firing interval optimization rocket launcher
  • 相关文献

参考文献4

二级参考文献28

共引文献161

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部