期刊文献+

一种基于小波变换模极大值的估计Lipschitz指数新方法 被引量:10

A Novel Method of Measuring Lipschitz Exponent Based on Wavelet Transform Modulus Maxima
下载PDF
导出
摘要 信号的奇异点和不规则部分往往包含丰富的信息,其奇异性行为通常由Lipschitz指数(Lipschitz Exponent,LE)来刻画.Mallat和Hwang在其经典文献[1]中提出采用小波变换模极大值随对数尺度变化曲线的最大斜率作为LE指数的度量.该方法已被学界广泛采用.但是,由于该计算方法只是文献[1]定理4不等式等号成立时的特例,故在噪声的情况下其计算的精确性和鲁棒性往往得不到保证.本文将Mallat的方法进行了改进,将对数坐标系中在小波变换尺度范围内满足文献[1]定理4的直线与小波变换模极大值(Wavelet Transform Modulus Maxima,WTMM)曲线间的面积作为估算LE的目标函数.在此基础之上研究了LE的先验知识,并给出了适于工程计算的估计算法.最后进行了对比仿真实验.实验结果证明本文的方法具有更高的精确性和鲁棒性. Singularities and irregular structures typically characterize the content of signals. The Lipschitz Exponent (LE) is the most popular measure of the singularity behavior of a signal. Most of the existing methods of measuring LE using wavelet transform are derived from the previous work of Mallat and Hwang, which equals LE to the maximum slope of straight lines that remain above the wavelet transform modulus maxima(WTMM) curve in the log-log plot of scale s versus WTMM. However this method is not always robust and precise especially in noise environment, because it is only the particular case of the inequation (25) in [ 1 ]. In this paper we adopt a new area-based objective function.Based on it, we choice the slope of the line, which minimize the objective function, as the value of LE from all the lines satisfying the inequation (25) in [ 1 ]. The results of experiment demonstrate that this method is more precise and robust.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第1期106-110,共5页 Acta Electronica Sinica
基金 国防基础科研基金(No.A1420061264)
关键词 Lipsehitz指数 小波变换 奇异性 小波变换模极大值 lipschitz exponent wavelet transform singularity wavelet transform modulus maxima
  • 相关文献

参考文献16

  • 1S Mallat, W L Hwang. Singularity detection and processing with wavelets [ J]. IEEE Transaction on Inf Theory, 1992,38 (2) :617 - 643.
  • 2A Arneodo, E Bacry, J F Muzy. The thesmodynamics ofractals revisited with wavelets [J]. Plays A, 1995,213 ( 1 - 2) : 232 - 275.
  • 3H Asada, M Brady. The curvature primal sketch [ J ]. IEEE Transaction on Pattern Anal Mach Intell, 1986,8( 1 ):2- 14.
  • 4C L Tu, W L Hwang. Analysis of singularities from modulus maxima of complex wavelets [ J ]. IEEE Transaction on Inf Theory, 2005,51 (3) : 1049 - 1062.
  • 5S Mallat. A Wavelet Tour of Signal Processing [ M ]. San Diego, CA: Academic, 1999. 163 - 219.
  • 6S Mallat, S Zhong. Characterization of signals from multiscale edges [ J ]. IEEE Transaction on Pattem Anal Mach Intell, 1992,14(7) :710- 732.
  • 7J Zhang, C X Zheng. Extracting evoked potentials with the singularity detection technique [J]. IEEE Engineering in Medicine and Biology, 1997,16(5) : 155 - 161.
  • 8E Chassande-Mottin, P Flandrin. On the time-frequency detection of chirps [ J]. Applied and Computational Harmonic Analysis, 1999,6(2) :252 - 281.
  • 9H B Nugraha, A Z R Langi. A procedure for singularity measurement using wavelet [ A ]. In Proceeding APCCAS' 02 [ C]. Bali, Indonesia: IEEE. Press, 2002.407 - 410.
  • 10K Berkner, R Wells. A new hierarchical scheme for approximating the continuous wavelet transform with applications to edge detection [J]. IEEE Signal Processing Letters, 1999, 6 (8) : 109- 195.

二级参考文献4

共引文献25

同被引文献99

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部