期刊文献+

一个基于四方向的拉普拉斯算子的四阶偏微分去噪方法 被引量:4

A fourth order partial differential denoising method based on four directional Laplacian operator
原文传递
导出
摘要 将"四方向"(水平、垂直、斜左上、斜左下四个方向)引入拉普拉斯算子,改进了You-Kaveh模型,提出一个新的四阶偏微分去噪方法.实验结果表明,新方法比You-Kaveh模型能更好地去除高斯噪声,PSNR值得到了提高. The "four directions" ( horizontal, vertical, diagonal left top and diagonal left bottom directions) is introduced into the Laplacian operator, and the You - Kaveh model is improved, a new fourth order partial differential denoising method is proposed. The result of experiences shows that the new method can remove the Gaussian noise better than the You - Kaveh model, higher values of PSNR are gained.
作者 曾超 王美清
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期52-54,共3页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(A0510005) 福州大学发展基金资助项目(2005-XQ-16)
关键词 You—Kaveh模型 高斯噪声 拉普拉斯算子 You - Kaveh model Gaussian noise Laplacian operator
  • 相关文献

参考文献6

二级参考文献23

  • 1Arthur Chun-Chieh Shih, Hong-Yuan Mark Liao, Chun_Shien Lu. A New Iterated Two-Band Diffusion Equation: Theory and Its Application[J]. IEEE Transaction on Image Processing, Vol. 12, No.4, April 2003.
  • 2Ilya Pollak, Alan S.Willsky, Hamid Krim. Image Segmentation and Edge Enhancement with Stabilized Inverse Diffusion Equations[J]. IEEE Transaction on Image Processing, Feb., 2000, Vol.9, No.2 256-266.
  • 3Joachim Weickert. A Review of Nonlinear Diffusion Filtering [R]. Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science, Vol.1252,Springer, Berlin, 1997: 3-28. Invited paper.
  • 4P.PeronaandJ.Malik,Scale-spaceandedgedetectionusinganisotropicdiffuusion.IEEEtrans. on Patt. Anal. andMach. Intell.,July 1990, vo1.12(7):629-639.
  • 5Joachim Weickert. Coherence-Enhancing Diffusion Filtering[J]. International Journal of Computer Vision, 1999, Vol.31, No.2/3:111 - 127.
  • 6Guy Gilboa, Yehoshua Y. Zeevi, Nir A.Sochen. Forward and Backward Diffusion Processes for Adaptive Image Enhancement Denosing [J]. IEEE Trans. On Image processing, 2002(7).
  • 7Ilya Pollak, Alan S.Willsky, Hamid Krim. Image Segmentation and Edge Enhancement with Stabilized Inverse Diffusion Equations[J]. IEEE Transaction on Image Processing, Feb., 2000, Vol.9, No.2 256-266.
  • 8Guy Gilboa, Yehoshua Y. Zeevi, Nir A. Sochen. Complex Diffusion Process for Image Filtering [R]. Scale-Space'01, LNCS 2106, Springer-Verlay, 2001:299-307.
  • 9Yu-Li You, M. Kaveh, Fourth-Order Partial Differential Equations for Noise Removal[J]. IEEE Trans. On Image Processing, Oct., 2000, Vol. 9(10): 1723- 1730.
  • 10Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans PAMI,1990,12(7):629-639.

共引文献11

同被引文献37

  • 1谢美华.基于四方向导数信息的图像非线性扩散去噪[J].红外技术,2004,26(6):51-53. 被引量:3
  • 2付树军,阮秋琦,王文洽.偏微分方程(PDEs)模型在图像处理中的若干应用[J].计算机工程与应用,2005,41(2):33-35. 被引量:14
  • 3赵志刚,万娇娜,管聪慧.基于小波包变换与自适应阈值的图像去噪[J].中国图象图形学报,2007,12(6):977-980. 被引量:13
  • 4Perona P, Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990,12 (7) :629-639.
  • 5You Y L,Kaveh M.Blind image restoration by anisotropic regularization[J].IEEE Transactions on Image Processing, 1999,8(3): 396-407.
  • 6Chen Yun-mei, Bose P.On the incorporation of time-delay regularization into curvature-based diffusion[J].Journal of Mathematical Imaging and Vision, 2001,14 : 149-164.
  • 7Voci F, Eiho S, Sugimoto N, et al.Esfirnating the gradient threshold in the Perona-Malik equation[J].IEEE Signal Processing Magazine, 2004,4 : 39-46.
  • 8Katsaggelos A K.A regularized iterative image restoration algorithm[J].IEEE Transaction on Signal Processing, 1991, 39(4): 914-929.
  • 9Chao S M, Tsai D M.Astronomical image restoration using an improved anisotropic diffusion[D/OL].Taiwan: Department of Industrial Engineering and Management, Yuan-Ze University, 2005-07-22. http ://www.elsevier.com/locate/patrec.
  • 10You Yu-li.Four-order partial differential equations for noise removal[J].IEEE Trans on Image Processing,2000,9(10):1723-1729.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部