期刊文献+

基于协方差调整的久期—凸度免疫策略分析

Analysis of Covariance-Adjusted Duration-Convexity Immunization Strategy
下载PDF
导出
摘要 众所周知,简单久期—凸度免疫策略中隐含两个假设:水平收益率曲线及其平行变动。针对这两个假设与实际情况不符的问题,本文借鉴Carcano和Foresi(1997)的思想,建立了一个基于协方差调整的一般久期—凸度免疫模型,并用两资产对冲组合和三资产对冲组合进行了具体分析。进一步,我们采用上海证券交易所上市的国债交易数据对一般模型的免疫效果进行了检验,结果显示基于协方差调整的久期—凸度免疫策略比简单久期—凸度免疫策略具有相对较强的免疫能力。 It is well known that there are two hypotheses in the simple immunization strategies based on duration and convexity: flat yield curve and paralleled shift. Aiming at the question that the hypotheses are inconsistent with the actual situation in practice, this paper provides a general model of covariance-adjusted duration-convexity immunization by using the idea from Carcano and Foresi ( 1997 ) for reference, and analyses the model in the case of hedging portfolios of two assets and three assets. Furthermore, we have tested for the immunity of the general model by employing market data of treasury bonds listed on Shanghai Stock Exchange. The empirical evidences show that the covariance-adjusted duration-convexity immunization approaches outperform the simple duration-convexity techniques.
出处 《财经问题研究》 CSSCI 北大核心 2008年第2期46-54,共9页 Research On Financial and Economic Issues
关键词 久期-凸度免疫 利率期限结构 波动率 Duration-Convexity immunization term structure volatility
  • 相关文献

参考文献17

  • 1Coleman,T. S. ,L Fisher,and R G.Ibbotson,1989. Historical U. S. Treasury Yield Curves,Chicago: Ibbotson Associates.
  • 2Carcano,N. ,and S. Foresi,1997. Hedging against interest rate risk: reconsidering volatility-adjusted immunization[J]. Journal of Banking and Finance 21,127-141.
  • 3Fisher,L.and K Weil,1971. Coping with the risk of interest rate fluctuations: returns to bondholders from naive and optimal strategies[J]. Journal of Business 44,408-431.
  • 4La Grandville,Olivier de. ,200L Bond Pricing and Portfolio Analysis: Protecting Investors in the Long Run [M]. Cambridge, Mass: MIT Press
  • 5Zheng,H. ,L Thomas,and D. E Allen,2003. The duration derby: a comparison of duration based strategies in asset liability management[J]. Journal of Bond Trading and Management 1,371 -380.
  • 6Cooper,I. A. ,1977.Asset valuez interest rate changes and duration[ J]. Journal of Financial and Quantitative Analysis 14,343-349.
  • 7Willner,R. ,1996. A new tool for portfolio managers: level,slope and curvature durations[ J]. Journal of Fixed Income 6,48 - 59.
  • 8Prisman,E.Z. ,and M. R. Shores,1988. Duration measures for specific term structure estimations and applications to bond portfolio immunization[J].Journal of Banking and Finance 12,493-504.
  • 9Elton,E. J. ,M. J.Gruber,and K Michaely,1990. The structure of spot rates and immunization[ J]. Journal of Finance 45,629 -64-.7.
  • 10Litterman,K ,and J. Scheinkman,1991. Common factors affecting bond returns[J]. Journal of Fixed Income 1,54 -61.

二级参考文献51

  • 1朱世武,李豫,董乐.交易所债券组合动态套期保值策略研究[J].金融研究,2004(9):65-76. 被引量:15
  • 2李奥奈尔 马特里尼 等.《固定收益证券》[M].机械工业出版社,2002..
  • 3国家统计局.2003年国民经济和社会发展统计公报[EB/OL].国家统计局网,2004—02—06.
  • 4Jian Chen, Michael C. Fu. Hedging beyond duration and convexity. Working paper. 2002.
  • 5Alejandro Balb, Alfredo Ib nez. When can you immunize a bond portfolio?. Journal of Banking & Finance 22, P1571 - P1595, 1998.
  • 6Laoey N, Nawhalka S. Convexity, risk and returns. Journal of Fixed Income 3 (3), P72- P79,1993.
  • 7Barber J R, Copper M L. A minimax risk strategy for portfolio immunization[ J]. Insurance: Mathematics and Economics, 1998, 23(2): 173-177.
  • 8Cooper I A. Asset values, interest-rate changes, and duration[J]. Journal of Financial and Quantitative Analysis, 1977, 12(5):701-723.
  • 9Litterman R, Scheinkman J. Common factors affecting bond returns[J]. Journal of Fixed Income, 1991, 1(1): 54-61.
  • 10Derman E. The future of modeling[J]. Risk, 1997, 10(12): 164-167.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部