摘要
利用叠代估计方法研究带吸收系数的正倒向随机微分方程的可解性,在正向随机微分方程的扩散系数可以退化的情形下,证明了适应解的存在性和唯一性,也研究这类正倒向随机微分方程与偏微分方程的联系.
The solvability of forward-backward stochastic differential equations with ab- sorption coemcients is studied by the successive approximation method. The existence and uniqueness of an adapted solution are established for the equations which allow the diffusion in the forward stochastic differential equations to be degenerate. The authors also study their connection with partial differential equations.
出处
《数学年刊(A辑)》
CSCD
北大核心
2008年第1期71-82,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10201018)
英国EPSRC基金(No.GR/R69518)资助的项目
关键词
正倒向随机微分方程
吸收系数
粘性解
Forward-backward stochastic differential equations, Absorption