期刊文献+

带吸收系数的正倒向随机微分方程的可解性

On the Solvability of Forward-Backward Stochastic Differential Equations with Absorption Coefficients
下载PDF
导出
摘要 利用叠代估计方法研究带吸收系数的正倒向随机微分方程的可解性,在正向随机微分方程的扩散系数可以退化的情形下,证明了适应解的存在性和唯一性,也研究这类正倒向随机微分方程与偏微分方程的联系. The solvability of forward-backward stochastic differential equations with ab- sorption coemcients is studied by the successive approximation method. The existence and uniqueness of an adapted solution are established for the equations which allow the diffusion in the forward stochastic differential equations to be degenerate. The authors also study their connection with partial differential equations.
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第1期71-82,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10201018) 英国EPSRC基金(No.GR/R69518)资助的项目
关键词 正倒向随机微分方程 吸收系数 粘性解 Forward-backward stochastic differential equations, Absorption
  • 相关文献

参考文献13

  • 1Pardoux E. and Peng S., Adapted sohltion of a backward stochastic differential equation [J]. Systems and Control Letters, 1990, 14:55-61.
  • 2Peng S., Probabilistic interpretation for syst.ems of quasilinear parabolic partial differcntial equations [J]. Stochastic arid Stochastic Rep., 1991, 37:61- 67.
  • 3Pardoux E. and Peng S., Backward stochastic differential equations and quasilinear parabolic partial differential eqautious [M]// Rozowskii, B. L. and Sowers, R. B. (ed.), Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control Inf. Sci. 176, Berlin: Springer-Verlag, 1992:200 217.
  • 4Antonelli F., Backward-forward stochastic differential equations [J]. Ann. Appl. Probab., 1993, 3:777- 793.
  • 5Ma J., Protter P. and Yong J., Solving of forward-backward stochastic differential equations explicitly a four step scheme [J]. Probab. Theory Related Fields, 1994, 98:339- 359.
  • 6Delarue F., On the existence and uniqueness of solutions to FBSDEs in a non degellerate case [J]. Stochastic Process. Appl., 2002, 99:209 -286.
  • 7Itu Y. and Peng S.. solution of forward-backward stochastic differential equations [J]. Probab. Theory Related Fields, 1995, 103:273- 283.
  • 8Pardoux E. and Tang S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs [J]. Probab. Theory Related Fields, 1999, 114:123- 150.
  • 9Hu Y. and Yong J.. Forward-backward stochastic differential equations with nonsmooth coefficients [.}]. Stochastic Process. Appl., 2000, 87:93 -106.
  • 10Ma J. and Yong J., Forward-backward Stochastic Differential Equations and Their Applications [M]// Lecture Notes in Mathematics, Vol. 1702, Berlin: Springer-Verlag, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部