期刊文献+

基于神经网络的移动机器人路径规划方法 被引量:25

Path planning methods of mobile robot based on neural network
下载PDF
导出
摘要 针对动态环境下移动机器人路径规划,提出了一种基于递归神经网络的实时路径规划方法。利用神经网络表示机器人的工作空间,每个神经元都只有局部侧连接。目标点位置神经元具有全局最大的正活性值,该活性值通过神经元之间的局部侧连接逐渐衰减地传播到整个状态空间,障碍物及其周围区域神经元活性值则被抑制为零。目标点全局地吸引机器人,障碍物局部地将机器人推开实现避障,从而能够在动态环境下产生最优规划路径。仿真结果表明该方法具有较好的环境适应性和实时性。 To investigate the path planning methods of mobile robot in dynamic environment, a method is proposed based on recurrent neural networks in real-time environment. The arrangement of the neurons coincides with the discretized representation of configuration space. The target neuron has the maximal positive neural activity, which is damply promulgated to the whole state space via local lateral connections of neurons. The activities of the neurons, in obstacle fields and the local neighborhoods, are made to zero. The target globally attracts the robot, and the robot can avoid obstacles locally. The robot can generate the optimal trajectory in dynamic environment. Simulation results demonstrate that the method has high adaptability to dynamic environment and real-time ability.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第2期316-319,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60675044)
关键词 移动机器人 路径规划 递归神经网络 状态空间 mobile robot path planning recurrent neural network configuration space
  • 相关文献

参考文献7

  • 1Robin R M.人工智能机器人学导论[M].杜军平,等译.北京:电子工业出版社,2004:200-202.
  • 2Chen Huahua, Du Xin, Gu Weikang. Path planning method based on neural network and genetic algorithm[C]//Proceedings IEEE International Conference on intelligent Mechatronicn and Automation, 2004(8) : 667 - 671.
  • 3Glasius R, Komoda A, Gielen S, A biologically inspired neural net for trajectory formation and obstacle avoidance[J]. BiologicalCybernetics, 1996, 74(6): 511-520.
  • 4Dmitry Lebedev V, Jochen Steil J. Real-time path planning in dynamic environments comparison of three neural network models[C]//Proceedings of the IEEE International Conference on Systems , Man and Cybernetics , 2003 ,4 : 3408 - 3413.
  • 5Meng Max, Yang Xianyi. A neural network approach to realtime trajectory generation[C]//Proceedings IEEE International Conference on Robotics & Automation, 1998(5) : 1725 - 1730.
  • 6Ni Bin, Chen Xiong, New approach of neural network for robot path planning[C]//IEEE International Conference on Systems, Man and Cybernetics , 2004 : 735 - 739.
  • 7樊长虹,卢有章,刘宏,黄上腾.基于神经网络的移动机器人路径规划[J].计算机工程与应用,2004,40(8):86-89. 被引量:18

二级参考文献8

  • 1[1]Latombe J C.Robot motion planning[M].Kluwer Academic Publishers,1991
  • 2[2]Glasius R.Neural network dynamics for path planning and obstacleavoidance[J].Neural Networks, 1995; 8 ( 1 ): 125~133
  • 3[3]Yang S X,M Max. Neural Network Approaches to Dynamic CollisionFree Trajectory Generation[J].IEEE SMC Part B,2001;31(3):302~318
  • 4[4]Kassim A,V Kumar. Path planners based on wave expansion neural network[J].Robotics and Autonomous Systems, 1999;26:1~22
  • 5[5]Muniz F et al. Neural controller for a mobile robot in nonstationary environment[C].In:the 2nd IFAC on Intelligent Autonomous Vehicles, Helsinki,Finland, 1995:275~284
  • 6[6]Piper J,E Granum. Computing distance transformations in convex and non-convex domains[J].pattern Recognition, 1987;20:599~615
  • 7[7]Al-Hasan,Vachtsevanos G.Intelligent route planning for fast autonomous vehicles operating in a large natural terrain[J].Robotics and Autonomous Systems, 2002 ;40:1~24
  • 8[8]Yang S X,M Max. An efficient neural network approach to dynamic robot motion planning[J].Neural Networks,2000; 13:143~148

共引文献19

同被引文献315

引证文献25

二级引证文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部