期刊文献+

基于MRF的复杂图像抠图 被引量:6

A MRF Model-based Approach to Natural Image Matting
下载PDF
导出
摘要 所谓复杂图像抠图就是从复杂图像中抠取出目标物体的一种图像处理算法。为了取得更好的抠图效果,提出了一种基于马尔可夫随机场的自然图像抠图方法。该方法首先手工把图像分成3个区域:前景区域、背景区域和未知区域;然后,再将未知区域用手工粗略地划分成几个相交的小区域;接着在每一个小区域内,以其中的未知区域的像素点为节点,定义抠图标号,同时在这些节点上面建立MRF抠图模型,并把这些标号赋给这些节点,这样抠图问题被定义为在这个MRF模型和它的Gibbs分布上MAP估计问题;继而再计算出每个小区域的掩像;最后把这些掩像合并,即得到输入图像最终的掩像。和其他算法相比,对复杂图像的抠图问题,该方法可以取得更好的抠图效果。 Natural image matting is an important algorithm on image processing to extract the foreground objects from the background image. This paper proposes a Markov random field(MRF) model-based approach to natural image matting with complex scenes. The image is manually, divided into three regions:fore-region, back-region and unknown region, which is segmented into several sub-regions. In each sub-region, we partition the colors of neighboring background or foreground pixels into several clusters in RGB color space and assign matting label to each unknown pixel. Each label is modeled as an MRF and the matting problem is then formulated as a maximum a posteriori (MAP) estimation problem. Simulated annealing is used to find the optimal MAP estimation. The better results can be obtained under the same user-interactions when the image is complex. Results of natural image matting experiments performed on complex images using this approach are shown and compared in this paper.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第3期499-505,共7页 Journal of Image and Graphics
基金 国家自然科学基金重点项目(60033010) 国家自然科学基金资助项目(10702067) 浙江省自然科学基金项目(Y105324) 浙江省科技厅计划项目(2006C31065)
关键词 蓝屏抠图 自然图像抠图 马尔可夫随机场 模拟退火 blue screen matting, natural image matting, Markov random field, simulated annealing
  • 相关文献

参考文献16

  • 1Smith A R, Blinn J F. Blue screen matting[A]. In: Proceedings of SIGGRAPH [ C ] , New Orleans, LA, USA, 1996 : 259 - 268.
  • 2Li S Z. Markov Random Field Modeling in Computer Vision [ M ]. Tokyo,Japan: Springer-Verlag, 1995.
  • 3Michael Kass, Andrew Witkin, Demetri Terzopoulos. Snakes: active contour models[ J]. International Journal of Computer Vision, 1998, 1(4) :321 -331.
  • 4Berman A, Vlahos P, Dadourian A. Comprehensive Method for Removing From an Image the Back-ground Surrounding a Selected Object[P]. U.S. Patent 6,134,345, 2000.
  • 5Ruzon M, Tomasi C. Alpha estimation in natural images[ A ]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [ C ]. Hilton Head Island, SC, USA, 2000 : 18 - 25.
  • 6Hillman P, Hannah J, Renshaw D. Alpha channel estimation in high resolution images and image sequences [ A ]. In : Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [ C]. Hawaii, USA, 2001:1063 - 1068.
  • 7Chuang Y Y, Curless B, Salesin D, et al. A Bayesian approach to digital matting [ A ]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [ C ]. Hawaii, USA, 2001:264 -271.
  • 8Rother C, Blake A, Kolmogorov V. Grabcut-interactive foreground extraction using iterated graph cuts [ A ]. In: Proceedings of SIGGRAPH 2004 [ C ] , Los Angeles, CA, USA, 2004:309 - 314.
  • 9Li Y, Sun J, Tang C K, et al. Lazy snapping[A]. In: Proceedings of SIGGRAPH 2004 [ C ]. Los Angeles, CA, USA, 2004:303 - 308.
  • 10Blake A, Rother C, Brown M, et al. Interactive image segmentation using an adaptive GMMRF model[ A ]. In: Proceedings of European Conference on Computer Vision 2004 [ C ] , Prague, Czech, 2004: 428 - 442.

二级参考文献8

  • 1Smith A R, Blinn J F. Blue screen matting [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH 1996, New Orleans, 1996. 259~268
  • 2Ruzon M A, Tomasi C. Alpha estimation in natural images[A]. In: Proceedings of IEEE Computer Vision and Pattern Recognition 2000, Hilton Head Island, 2000. 18~25
  • 3Hillman P, Hannah J, Renshaw D. Alpha channel estimation in high resolution images and image sequences [A]. In:Proceedings of IEEE Computer Vision and Pattern Recognition 2001, Hawaii, 2001. 1063~1068
  • 4Chuang Y Y, Curless B, Salesin D, et al. A Bayesian approach to digital matting [A]. In: Proceedings of IEEE Computer Vision and Pattern Recognition 2001, Hawaii, 2001. 264~271
  • 5Berman A, Dardourian A, Vlahos P. Method for Removing From an Image the Background Surrounding a Selected Object[P]. U.S.Patent, 6,134,346, 2000
  • 6Berman A, Vlahos P, Dadourian A. Comprehensive Method for Removing From an Image the Background Surrounding a Selected Object [ P]. U.S. Patent, 6,134,345, 2000
  • 7Orchard M T, Bouman C A. Color quantization of images [J].IEEE Transactions on Signal Processing, 1991, 39(12): 2677~ 2690
  • 8Chuang Y Y, Agarwala A, Curless B, et al. Video matting of complex scenes [A]. In: Computer Graphics Proceedings,Annual Conference Series, ACM SIGGRAPH 2002, San Antonio, 2002. 243~248

共引文献15

同被引文献44

  • 1张文哲,彭延军,牛翠霞.全局Poisson抠图的实现与改进[J].系统仿真学报,2006,18(z1):92-93. 被引量:5
  • 2张璐璐,范海玲.分形理论在图像信息提取中的应用[J].光盘技术,2008(3):54-55. 被引量:1
  • 3葛玉峰,周宏平,郑加强,张慧春.基于相对色彩因子的树木图像分割算法[J].南京林业大学学报(自然科学版),2004,28(4):19-22. 被引量:14
  • 4林生佑,石教英.基于感知颜色空间的自然图像抠图[J].计算机辅助设计与图形学学报,2005,17(5):915-920. 被引量:16
  • 5Chuag Y Y,Curless B, Salesin D, et al.A Bayesian approach to digital matting[C]//IEEE Computer Vision and Pattern Recognition,2001:264-271.
  • 6Berman A, Vlahos P, Dadourian A.Comprehensive method for removing from an image the background surrounding a selected subject: USA, 2000/013061 [P].2000-03-09.
  • 7Rother C, Blake A, Kolmogorov V.Grabcut-interactive foreground extraction using iterated graphcuts[C]//Proceedings of SIGGRAPH 2004,Los Angles,2004:309-314.
  • 8Li Y, Sun J,Tang C K,et al.Lazy snapping[C]//Proceedings of SIGGRAPH 2004,Los Angeles, 2004 : 303-308.
  • 9Grady L, Schiwietz T,Aharon S,et al.Random Walks for interactive Alpha-matting[C]//Proceedings of the 5th IASTED International Conference on Visualization, Imaging and Image Processing.Spain:ACTA Press,2005 :423-429.
  • 10Levin A, Ravacha A, Lischinski D.Spectral matting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(10) : 1699-1712.

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部