期刊文献+

参数未知时滞混沌系统的自适应同步 被引量:1

Adaptive synchronization for time-delay chaotic system with unknown parameter
下载PDF
导出
摘要 考虑参数不确定的多维时滞混沌系统作为驱动系统(发射系统),系统的未知参数能够在系统中线性表示。采用参数辨识与自适应技术,在响应系统(接收系统)中应用线性反馈与参数自适应控制,使得驱动系统与响应系统能够混沌同步,并且响应系统的参数逐步逼近驱动系统的参数。利用Lyapunov泛函与最大不变集原理(Lassel)给出了理论分析与证明。理论分析与数值模拟结果表明该自适应控制同步策略的有效性。 Study the time-delay chaotic system with unknown parameter as the master system in the chaotic synchronization. The parameters can be expressed linearly in the system. Based on the adaptive strategy and linear control in the slave system, the error of the two systems can be asymptotically stable and the unknown parameters are estimated. The analysis and proof are given by means of the Lyapunov functional and the Lassel invariant principle are used. The two dimension Ikeda chaotic system with unknown parameters is simulated to illustrate theoretical results.
作者 刘国刚
出处 《电路与系统学报》 CSCD 北大核心 2008年第1期106-109,共4页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(10371136)
关键词 混沌控制 混沌同步 时滞系统 参数自适应 chaotic control chaotic synchronization time-delay system parameter adaptive
  • 相关文献

参考文献10

  • 1Boccaletti Set. al. The synchronization of chaotic systems [J]. Physics Reports, 2002, (1): 366: 1-101.
  • 2Tao C, et al. Estimating model parameters by chaotic synchronization [J]. Physical Review E, 2004, 69: 036204.
  • 3Huang D, Guo R. Identifying parameter by identical synchronization between different systems [J]. Chaos, 2004, 14: 152-159.
  • 4刘国刚,赵怡.参数不确定混沌系统的自适应同步控制[J].电路与系统学报,2005,10(1):24-27. 被引量:5
  • 5Pyragas K. Synchronization of coupled time-delay systems: Analytical estimations [J]. Physical Review E, 1998, 58(3): 3067-3071.
  • 6LI C, LIAO X, WONG K, Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication[J]. Physica D, 2004, 194:187-202.
  • 7LI C, LIAO X, ZHANG R, A unified approach for impulsive lag synchronization of chaotic systems with time delay [J]. Chaos, Solitons and Fractals, 2005, 23:1177-1184.
  • 8张洪,陈天麒.一类时延混沌系统的自适应同步[J].系统工程与电子技术,2005,27(4):708-710. 被引量:3
  • 9SHU Y, et al. Control of Chaotic n-dimensional continuous-time system with delay [J]. Physics Letters A, 2004, 32(3): 251-259.
  • 10Mackey M C, Glass L. Oscillation and chaos in Physiological control systems [J]. Science, 1977, 197: 287-289.

二级参考文献24

  • 1Anjou A d', et al. Parameter-adaptive identical synchronization disclosing Lorenz chaotic masking [J]. Physical Review E, 2001, 63(4): 6213.
  • 2Maybhate A, Amritkar R E. Use of synchronization and adaptive control in parameter estimation from a time series [J]. Physical Review E, 1999, 59: 284-293.
  • 3Maybhate A, Amritkar R E. Dynamic algorithm for parameter estimation and its applications [J]. Physical Review E, 2000, 61: 6461-6469.
  • 4Tao C, et al. Estimating model parameters by chaotic synchronization [J]. Physical Review E, 2004, 69(3): 6204.
  • 5Huang D, Guo R. Identifying parameter by identical synchronization between different systems [J]. Chaos, 2004, 14: 152-159.
  • 6Chen S, Lü J. Parameters identification and synchronization of chaotic systems based upon adaptive control [J]. Physics Letters A, 2002, 299: 353-358.
  • 7Liao T. Adaptive synchronization of two Lorenz systems [J]. Chaos, Solitons & Fractals, 1998, 9: 1555-1561.
  • 8Li Z, Han C, Shi S. Modification for synchronization of Rossler and Chen chaotic system [J]. Physics Letters A, 2002, 301: 224-230.
  • 9Chen S, Lü J. Synchronization of an uncertain unified chaotic system via adaptive control [J]. Chaos, Solitons & Fractals, 2002, 14: 643-647.
  • 10Parlitz U. Estimating model parameters from times series by autosynchronization [J]. Physical Review Letters, 1996, 76:1232-1235.

共引文献6

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部