期刊文献+

基于神经网络模型的遥感影像几何校正研究 被引量:3

GEOMETRIC RECTIFICATION OF REMOTE SENSING IMAGERY BASED ON NEURAL NETWORK MODEL
下载PDF
导出
摘要 在遥感影像几何校正方法中,通常认为精度最高的是共线方程模型。针对共线方程模型定向参数解算过程中误差方程的病态问题,提出了利用基于控制点的神经网络方法进行高分辨率遥感影像几何校正方法,并从理论上进行了可行性分析。实验证明,在具有一定数量控制点作为训练样本的条件下,应用BP和RBF神经网络进行遥感影像几何校正,可以达到比共线方程模型更高的精度;神经网络模型能够自动抑制含较大误差控制点对模型纠正精度的影响,在实际应用中可以提高几何校正效率。 Of all the methods for geometric rectification of remote sensing imagery, the Collinearity Equation Model is usually considered to have the best accuracy. Nevertheless, when the Collinearity Equation Model based on GCPs (Ground Control Points) is used to compute the elements of inner and exterior orientation, the coefficient matrix condition of the normal equation often becomes deteriorative, which greatly affects the accuracy of the orientation elements. In this paper, a new method for geometric rectification based on neural network is proposed , Experiments show that, under the precondition that a certain number of GCPs serve as the training data, the neural network ofBP and RBF can perform well in geometric rectification of remote sensing imagery and reach higher accuracy than the Collinearity Equation Model. Besides, the neural network can eliminate the influence of GCPs with gross error, and hence can better improve the efficiency.
出处 《国土资源遥感》 CSCD 2008年第1期19-22,63,共5页 Remote Sensing for Land & Resources
基金 国家自然科学基金(40671127) “111”计划(B06004) 长江学者和创新团队发展计划共同资助
关键词 神经网络 几何校正 共线方程模型 Neural network Geometric rectification Collinearity equation model
  • 相关文献

参考文献9

  • 1Vincent C T, Yong H A. Comprehensive Study of the Rational Function Model for Photogrammetric Processing [ J ]. Photogrammetric Engineering and Remote Sensing, 2001,67 ( 12 ) : 1347 - 1357.
  • 2Toutin T. Geometric Processing of Remote Sensing: Models, Algorithms and Methods[J]. International Journal of Remote Sensing, 2004, 25(10) : 1893 -1924.
  • 3Karslioglu M O, Friedrich J. A New Differential Geometric Method to Rectify Digital Images of the Earth' s Surface Using Isothermal Coordinates [ J ]. IEEE Transaction of Geoscience and Remote Sensing, 2005, 43 (3) : 666 - 672.
  • 4Susumu Hattori, Tetsu Ono, Clive Fraser, et al. Orientation of High - resolution Satellite Images Based on Affine Projection[ A]. International Archives of ISPRS 2000 Congress[ C ]. 2000.
  • 5郭建峰.测量平差系统病态性[D].郑州:中国人民解放军信息工程大学,2003.
  • 6郑肇葆.摄影测量中病态问题求解--数学规划在摄影测量中应用之二.测绘学报,1987,16(3):198-202.
  • 7Kratky V. Rigorous Photagrammetric Processing of SPOT Images at CCM Canada [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing ,1989, 44(2) :53 -71.
  • 8Kratky V. On - line Aspects of Stereophotogrammetric Processing of SPOT Images [ J ]. Photogrammetric Engeneering and Remote Sensing , 1989, 55 (3) : 311 -316.
  • 9Boccardo P, Borgogno Mondino E, Giulio Tonolo F. High Resolution Satellite Images Position Accuracy Tests [ A ]. IGARSS Toulouse(CD) , 2003.

共引文献1

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部