期刊文献+

高次三角形有限元外推的探讨 被引量:4

Discussions about Extrapolations for Higher Order Triangular Finite Elements
原文传递
导出
摘要 探讨泊松方程高次三角形有限元外推公式.为此先推导离散格林函数的权模估计和有限元解的渐近不等式展开,然后给出公式的证明. This paper discusses the extrapolation formulas for the higher order triangular finite elements of Poisson equation. For this, we derive the weighted estimates for discreet Green function and the asymptotic error expansion inequalities, and then the proofs of the formulas are given.
作者 周俊明 林群
出处 《数学的实践与认识》 CSCD 北大核心 2008年第5期99-106,共8页 Mathematics in Practice and Theory
基金 河北省自然科学基金研究专项资助项目(07M002) 国家基础研究项目(2005CB321701 K51J012716 K1510412S1)
关键词 权模估计 渐近不等式展开 有限元外推 weighted estimates asymptotic inequality expansions finite element extrapolations
  • 相关文献

参考文献15

  • 1朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989..
  • 2Shaidurov V. Multigrid Methods for Finite Elements[M]. Kluwer Academic Publisher,1995.
  • 3吕涛,石济民,林振宝.分裂外推与组合技巧[M].科学出版社,1998.
  • 4Lin Q, Lin J. Finite Element Methods: Accuracy and Improvement[M]. Science Press,2006.
  • 5Krizek M, Neittaanmaki P. On superconvergence techniques[J]. Acta Appl Math, 1987,9 (1) : 175-198.
  • 6Schatz A. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids[J]. Math Comp,1998,67(223):877-899.
  • 7Asadzadeh M, Schatz A, Wendland W, Asymptotic error expansions for the finite element method for second order elliptic problems I and Ⅱ[J]. Submitted to Math Comp, Dec, 2007.
  • 8Blum H, Lin Q, Rannacher R. Asymptotic error expansions and Richardson extrapolation for linear finite elements[J]. Numer Math,1986,49(1) :11-37.
  • 9Wahlbin L. Superconvergence in Galerkin Finite Element Methods[M]. Springer, 1995.
  • 10Schatz A, Wahlbin L. Interior maximum norm estimates for finite element methods part Ⅱ[J]. Math Comp,1995, 64 (224) : 907-928.

二级参考文献13

  • 1周俊明,林群.超收敛的双p阶猜想[J].数学的实践与认识,2007,37(9):109-110. 被引量:1
  • 2朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989..
  • 3Lin Q, Zhou J. Supereonvergenee in high-order Galerkin finite element methods [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196 (37) : 3779-3784.
  • 4Brandts J, Krizek M. History and future of supereonvergence[C]. JAKUTO International Series, Math Sei Appl, 2001,15 : 22-33.
  • 5Lin Q, Lin J. Supereonverge on anistropie meshes[J]. International Journal of Information and Systems Sciences, 2007,3(2) :261-266.
  • 6Wahlbin L B. Superconvergence in Galerkin Finite Element Methods[M]. Springer,1995.
  • 7Schatz A H, Wahlbin L B. Interior maximum norm estimates for finite element methods part Ⅱ[J]. Math Comp, 1995,64:907-928.
  • 8Schatz A H, Sloan I, Wahlbin L B. Supereonvergence in the finite element method and meshes which are locally symmetric with respect to a point [J]. SIAM J Numer Anal, 1996,33 : 505-521.
  • 9Schatz A H. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids : part Ⅰ global estimates[J]. Math Comp, 1998,67 : 877-899.
  • 10Blum H, Lin Q, Rannacher R. Asymptotic error expansions and Richardson extrapolation for linear finite elements[J]. Numer Math,1986,49:11-37.

共引文献11

同被引文献38

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部