期刊文献+

基于独立成分分析的掌纹识别 被引量:18

Palmprint Recognition Based on Independent Component Analysis
下载PDF
导出
摘要 本文研究了独立成分分析(ICA)两种不同的结构ICAⅠ和ICAⅡ在掌纹识别中的应用。为了提高识别准确性和可靠性,该方法首先对掌纹图像进行预处理,提取掌纹感兴趣(ROI)区域进行特征提取和匹配。为了减少计算量,运用ICA算法之前,先采用主成分分析(PCA)算法去除掌纹图像的二阶统计特征相关性,其余的高阶统计特征由ICA分离。对于PolyU掌纹图像库,基于ICA模型的预测误差平方和(SPE)小于PCA,而且重构的原始图像优于PCA。为了比较两种算法识别性能,本文分别用PCA、ICAⅠ、ICAⅡ提取特征掌纹子空间,然后将待识别图像投影到低维子空间上,最后用余弦距离进行掌纹匹配。实验结果表明,ICA算法两种结构的识别率均高于PCA,ICAⅡ在性能上优于ICAⅠ。 Two different architectures of Independent Component Analysis (ICA) to palmprint recognition which were architecture Ⅰ and architecture Ⅱ were discussed. Region of Interest (ROI) in the palmprint images were extracted automatically by preprocessing before feature extraction and match so as to increase the recognition accuracy and reliability. In order to reduce computational complexity, Principal Component Analysis (PCA) was used to eliminate second-order dependencies in the palmprint images. The remaining higher-order dependencies were separated by ICA. The Square Project Error (SPE) of ICA model was smaller than that of PCA, and the reconstruction of the original palmprint images was superior to that gotten by PCA in PolyU Palmprint Database. To compare the recognition performance of two ICA architectures with PCA, we applied them to extract the palmprint feature subspace inside ROI. Then the images to be recognized were projected on small dimension subspace. Finally, we used a classifier to palmprint match based on cosine distance. Experimental results show that two ICA architectures perform better than PCA and ICA architecture Ⅱ is the best in performance.
出处 《光电工程》 CAS CSCD 北大核心 2008年第3期136-139,共4页 Opto-Electronic Engineering
关键词 图像预处理 主成分分析 独立成分分析 掌纹识别 余弦距离 image preprocessing principal component analysis (PCA) independent component analysis (ICA) palmprint recognition cosine distance
  • 相关文献

参考文献8

  • 1Han Chin-chuan, Cheng Hsu-liang, Lin Chih-lung. Personal Authentication Using Palm-print Features [J]. Pattern Recognition, 2003, 36(2): 371-381.
  • 2Kong Wai Kin, Zhang David, Li Wen Xin. Palmprint Feature Extraction Using 2-D Gabor filters [J]. Pattern Reeogniton, 2003, 36(10): 339-2347.
  • 3吴介,裘正定.掌纹识别中的特征提取算法综述[J].北京电子科技学院学报,2005,13(2):86-92. 被引量:20
  • 4Wu Xiangqian, Zhang David, Wang Kuanquan. Fisherpalms based palmprint recognition [J]. Pattern Recognition Letters, 2003, 24(15): 28,29-2838.
  • 5Lu Guangming, Zhang David, Wang Kuanquan. Palmprint Recognition Using Eigenpalms Features [J]. Pattern Recognition Letters, 2003, 24(9/10): 1463-1467.
  • 6李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 7Draper Bruce A, Baek Kyungim, Bartlett Marian Stewart, et al. Recognizing faces with PCA and ICA [J]. Computer Vision and Image Understanding, 2003, 91(1/2): 115-137.
  • 8Bartlett Marian Stewart, Movellan Javier R, Sejnowski Terrence J. Face Recognition by Independent Component Analysis [J]. IEEE Transaction on Networks, 2002, 13(6): 1450-1464.

二级参考文献14

  • 1李士心,刘鲁源.基于小波阈值去噪方法的研究[J].仪器仪表学报,2002,23(z2):478-479. 被引量:28
  • 2D Zhang,W Kong,J You.Online Palmprint Identification[J].IEEE Trans PAMI,2003,25(9):1041-1050.
  • 3G Lu,D Zhang,K Wang.Palmprint recognition using eigenpalms features[J].Patter Recognition Letters,2003,24(9):1463-1467.
  • 4D Zhang,W Shu.Two novel characteristics in palmprint verification:datum point and line feature matching[J].Pattern Recognition,1999,32(4):691-702.
  • 5J You,W Li,D Zhang.Hierarchical palmprint identification via multiple feature extraction[J].Pattern Recognition,2002,35(4):847-859.
  • 6N Duta,A K Jain,K V Mardia.Matching of palmprints[J].Pattern Recognition Letters,2002,23(4):477-485.
  • 7X Wu,D Zhang,K Wang.Fisherpalms based palmprint recognition[J].Pattern Recognition Letters,2003,24(15):2829-2838.
  • 8J Yang,D Zhang,A F Frangi,J Y Yang.Two-dimensional PCA:a new approach to appearance-based face representation and recognion[J].IEEE Trans PAMI,2004,26(1):131-137.
  • 9J Yang,J Y Yang.From image vector to matrix:a straightforward image progection technique-IMPCA vs.PCA[J].Pattern Recognition.2002,35(9):1997-1999.
  • 10边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.

共引文献52

同被引文献235

引证文献18

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部