期刊文献+

一种改进的粒子群算法求解背包问题 被引量:2

An improved particle swarm optimization algorithm for knapsack problems
下载PDF
导出
摘要 针对传统的离散粒子群优化算法后期容易陷入局部收敛这一缺点,提出了一种新的离散粒子群算法,使用了新的运动方程来更新粒子的位置,并将贪心算法的思想引入粒子群优化算法中,在粒子的位置初始化的过程中,把采用贪心策略所得出的结果作为一个粒子的初始位置.用改进的算法求解背包问题,通过与其他文献中仿真实例的计算和结果比较,表明该算法在全局寻优能力和收敛性上都优于传统的粒子群算法. Traditional discrete particle swarm optimization (DPSO) is easy to incur a local convergence in optimization. So we propose an improved DPSO algorithm in which a new motion equation is adopted to update the position of particles. The concept of Greedy algorithm is introduced into the DPSO algorithm, In the course of initialization, we use the results obtained from greedy strategy as the initial position of a particle. The knapsack problem was worked out with the proposed algorithm, showing that it is advantageous in global searching and convergence properties than traditional DPSO.
出处 《应用科技》 CAS 2008年第3期16-19,共4页 Applied Science and Technology
关键词 背包问题 粒子群优化算法 贪心算法 knapsack problem particle swarm optimization algorithm greedy algorithm
  • 相关文献

参考文献6

二级参考文献47

  • 1Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6): 39-42.
  • 2Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural to artificial systems [M]. New York: Oxford Univ Press, 1999.
  • 3Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proc 2001 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 4Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [M]. San Francisco: Morgan Kaufmann Publishers, 2001.
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc. IEEE Int. Conf. Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995,1942-1948.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [A]. Intelligent Technologies: from Theory to Applications [C]. Amsterdam: IOS Press, 2002. 214-220.
  • 7Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing, 2002, 1(2-3): 235-306.
  • 8Dautenhahn K. Book review: swarm intelligence [J]. Genetic Programming and Evolvable Machines, 2002, 3(1): 93-97.
  • 9Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [A]. Proc 1999 Congress Evolutionary Computation [C]. Piscataway, N J: IEEE Press, 1999:1951-1957.
  • 10Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimilation [A]. Proc 2000 Congress Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 2000:84-88.

共引文献148

同被引文献48

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部