期刊文献+

一种基于免疫学原理的入侵检测模型 被引量:3

AN INTRUSION DETECTION MODEL BASED ON IMMUNOLOGICAL PRINCIPLES
下载PDF
导出
摘要 通过对基于免疫原理的入侵检测相关技术的深入研究,提出了一个判断随机模式是否有漏洞的算法。对记忆检测器的冗余问题,借鉴免疫系统的变异原理,对记忆检测器集合进行了优化。在以上研究的基础上设计了一个新的入侵检测系统模型,模型中引入了检测器的亲和力成熟过程、记忆检测器变异以及非完全匹配规则,该模型具有分布性、自适应性以及轻负荷等优点。 Through the research on the intrusion detection technology based on immunological principles, an algorithm is presented to make sure whether a random pattern has a leak. The remember detector gather is optimized with the aberrance principle of immunology. Then a new intrusion detection model is designed. The affinity mutation, the aberrance of detector and the non-exact matching rules are applied to the model ,which has some virtues such as distribution, self-adaptability, light load, etc.
作者 魏春英
出处 《计算机应用与软件》 CSCD 北大核心 2008年第3期254-256,共3页 Computer Applications and Software
关键词 免疫原理 入侵检测 检测器 漏洞 Immunological principles Intrusion detection Detector Leak
  • 相关文献

参考文献5

  • 1Stephanie Forrest, ALan PereLson. Self-NonSelf Discrimination in a Computer[ C]. Proceeding of 1994 IEEE Symposium on Research in Security and Privacy. Los ALamos, CA:IEEE Computer Society Press. 1994:202-212,221-231.
  • 2Kim J, Bentley P. The artificial immune model for network intrusion detection [ C ]. In:Proc 7th European Congress on Intelligent Techniques and Soft Computing, Aaehen,Germany, 1999:13-19.
  • 3戚湧,张琨,刘凤玉,衷宜.基于生物免疫学的分布式入侵检测系统模型[J].计算机工程与设计,2004,25(4):481-483. 被引量:7
  • 4Kim J, Bentley P. Towards an artificial immune system for network intrusion detection:An investigation of clonal selection with a negative selection operator [ C ]. In : Proc Congress on Evolutionary Computation, Seoul, Korea, 2001.
  • 5刘大昕,黄敏,王作刚.基于免疫学理论的入侵检测技术[J].计算机工程与应用,2002,38(22):173-176. 被引量:3

二级参考文献11

  • 1S Forrest,A S Perelson,L Allen et al.Self-nonself discrimination ina computer[C].In :Proceedings of the 1994 IEEE Symposium on Re-search in Security and Privacy,Los Alamitos,CA :IEEE ComputerSociety Press, 1994
  • 2D'haeseleer Patrik,Forrest Stephanie,Helman Paul. A Distributed Ap-proach to Anomaly Detection [online].University of New Mexico,Available WWW:〈URL:http://www.cs.unm.edu/~forrest/papers.html,1997
  • 3Wespi A,Dacier M,Debar H(IBM Zurich).Intrusion Detection UsingVariable-Length Audit Trail Patterns(RZ 3164).Zurich,Switzerland:IBM Research. Available WWW:〈URL:http://domino.watson.ibm.com/library/C YBERDIG.NSF/95f0a8c5802d9417852566a90057461 f/02a4ec9dSb79ae 14852567da0034838f/3F1LE/rz3164.ps〉, 1999
  • 4P Helman,S Forrest. An efficient algorithm for generating random an-tibody strings[R].Technical Report CS-94-07,The University of NewMexico, Albuquerque, NM, 1994
  • 5P D'haeseleer. Further efficient algorithms for generating antibodystrings[R].Technical Report CS95-3,The University of New Mexico,Albuquerque, NM, 1995
  • 6J Allen,A Christie,W Fithen et al.State of the practice of intrusiondetection technologies[R].Carnegie Mellon University/Software Engi-neering Institute Technical Report CMU/SEI-99-TR-028,2000-01
  • 7Anchor K P'Williams P D'Gunsch G H'et al.The computerdefense immune system:current and future research in intrusion detection [A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02)[C].2002.1027- 1032.
  • 8Zhao J Z'Huang H K.An evolving intrusion detection system based on natural immune system [A].Proceedings of IEEE Region 10 Conference on Computers'Communications'Control and Power Engineering (TENCON '02) [C].2002.129-132.
  • 9Tarakanov A O'Skormin V A.Pattern recognition by immunocomputing[A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02) [C].2002.938-943.
  • 10Jungwon K'Bentley P J.Towards an artificial immune system for network intrusion detection:an investigation of dynamic clonal selection [A].Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02) [C].2002.1015-1020.

共引文献8

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部