期刊文献+

基于D-S证据理论的直流电机故障诊断研究 被引量:11

Fault Diagnosis of DC Machine Based on Data Fusion
下载PDF
导出
摘要 通过分析直流电机的故障机理,得到在不同信号(如电流、转速、转矩等)中所表现的故障特征,提出了一种神经网络和D-S证据理论的多传感器数据融合技术的直流电机故障诊断方法。利用多源信息间的冗余性和互补性,有效提取故障特征信息,提高了诊断的可靠性和灵敏度。 A new method of fault diagnosis for DC machine which based on neural BP network and D-S Evidential Theory was proposing. After analyzed DC machine' s fault mechanism the fault features under vary signal such as electronic circuits rev and torque etc were obtained. Using redundancy and complementary of the multi-source signals, it selects features efficiency. The method was verified by simulation and the reliability and delicacy of diagnosis were improved.
作者 嵇斗 王向军
出处 《电机与控制应用》 北大核心 2008年第2期49-51,64,共4页 Electric machines & control application
关键词 直流电机 故障诊断 信息融合 D-S证据理论 DC machine fault diagnosis data fusion D-S evidential theory
  • 相关文献

参考文献5

  • 1沈标正.电机故障诊断技术[M].北京:机械工业出版社,2003.
  • 2Subbasis Nandi. Fault analysis for condition monitoring of induction motors [ D ]. Texas A&M University. 2000.
  • 3Andrzej M. Trzynadlowski E R. Comparative investigation of diagnostic media for induction motors:a case of rotor cage faults [ J ]. IEEE Trans on Industrial Electronics, 2000.47(5 ) : 1092-1099.
  • 4Subhasis N, Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines-A review [ C]// In Conference Record IEEE-IAS. Annual meeting, Phoenix, AZ, 1999 : 197-204.
  • 5侯志祥,申群太,李河清.电机设备的现代故障诊断方法[J].电力系统及其自动化学报,2003,15(6):61-63. 被引量:44

二级参考文献13

共引文献52

同被引文献106

引证文献11

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部