期刊文献+

有限长不规则LDPC码的构造和编码的优化 被引量:1

Optimization of Construction and Encoding for Finite Length Irregular LDPC Codes
下载PDF
导出
摘要 该文分析了影响有限长低密度校验(LDPC)码性能的主要因素,在此基础上从度分布参数的优选为起点,结合改进的循序边增长(PEG)算法构造出初步的校验矩阵,提出一种实用的编码优化算法对该校验矩阵进一步优化,最终得到错误平底低且编码复杂度准线性的有限长不规则LDPC码。该优化方法可以容易地推广到一般的信道条件下。 The main influence for the performance of finite length Low-Density Parity-Check(LDPC) codes is analyzed. According to optimum choice for degree distribution, a check matrix is constructed with improved Progressive-Edge-Growth (PEG) algorithm. A practical efficient encoding algorithm is proposed to optimize the check matrix. A finite length irregular LDPC code with low error-floor performance and approximate linear encoding complexity is obtained. This optimization method can be easily extended to general communication channels.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第3期600-603,共4页 Journal of Electronics & Information Technology
关键词 有限长LDPC码 错误平底 边循序增长(PEG)算法 Finite length Low-Density Parity-Check (LDPC) codes Error-floor Improved Progressive- Edge-Growth (PEG) algorithm
  • 相关文献

参考文献9

  • 1Richardson T, Shokrollahi M, and Urbanke R. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. on Inform. Theory, 2001, 47(2): 619-637.
  • 2Richardson T and Urbanke R. Efficient encoding of low-density parity-check codes. IEEE Trans. on Inf. Theory, 2001, 47(2): 638-656.
  • 3Tian T, Jones C, Villasenor J D, and Wesel R D. Selective avoidance of cycles in irregular LDPC code construction. IEEE Trans. on Commun., 2004, 52(8): 1242-1247.
  • 4Di C, Proietti D, Telatar I E, Richardson T J, and Urbanke R L. Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. on Info. Theory, 2002, 48(6): 1570-1579.
  • 5Johnson S J and Weller S R. Constraining LDPC degree distributions for improved error floor performance. IEEE Commun. Letters, 2006, 10(4): 103-105.
  • 6Hu X Y, Eleftheriou E, and Arnold D M. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans.on Info. Theory, 2005, 51(1): 386-398.
  • 7Xiao H and Banihashemi A H. Improved Progressive-Edge- Growth (PEG) construction of irregular LDPC codes. IEEE Commun. Letters, 2004, 8(9): 715-717.
  • 8Chen J, Dholakia A, Eleftheriou E, Fossorier M P C, and Hu X. Reduced-complexity decoding of LDPC codes. IEEE Trans. on Commun., 2005, 53(8): 1288-1299.
  • 9Mackay D J C. [Online], http://www.inference.phy.cam.ac. uk/mackay/codes/data.html, 2001.

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部