期刊文献+

由时频分布引导的四参数子空间匹配追踪算法

Four-Parameter Subspace Matching Pursuit Algorithm with the help of time-frequency distribution
下载PDF
导出
摘要 为了克服四参数匹配追踪计算量巨大的缺点,本文提出了一种由时频分布引导的四参数子空间匹配追踪算法。该算法由引导时频分布确定chirp原子的时频中心,然后用模板匹配方法搜索原子的尺度和调频率(chirp rate)。这样,一个高计算复杂度的四维搜索问题被转化为两个相对简单的二维搜索问题。为有效利用时频分布,每次搜索多个时频原子,这些原子不再相互正交。为此,我们利用最小二乘方法计算信号(或残差信号)在相应子空间上的正交投影。同快速脊追踪算法相比,四参数子空间匹配追踪需要更少的原子逼近信号,对实测语音信号的数值计算也证实了这点。 In this paper,we propose a novel matching pursuit algorithm, namely four-parameter subspace matching pursuit algorithm with the help of the time-frequency distribution. In the algorithm, the time-frequency centers of the chirp atoms are determined from the pilot TF distribution and then the scale factor and chirp rate is estimated by the stencil matching method. In this way, a four-parameter search of high computational complexity is simplified into the two two-parameter searches with low computational complexity. In order to take full advantage of the pilot TF distribution, we search multiple matching chirp atoms in each iteration and these atoms are not orthogonal with each other any more. Therefore, the LSM algorithm is used to compute the orthogonal projection of the signal or residual signal onto the corresponding subspace spanned by these atoms. Comparing with the fast ridge pursuit, the proposed algorithm requires much less TF atoms to approximate a signal, which is verified by the numerical results to speech signals.
出处 《信号处理》 CSCD 北大核心 2008年第1期147-151,共5页 Journal of Signal Processing
基金 国家优秀博士学位论文作者专项基金(No:200139) 国家自然科学基金(No:60272058) 教育部高校青年教师奖专项基金
关键词 chirp原子 子空间匹配追踪 时频分布 最小二乘法 chirp atoms subspace matching pursuit time-frequency distribution and Least square algorithm
  • 相关文献

参考文献13

  • 1A. Bultan, "A four-parameter atomic decomposition of chirplets. " IEEE Trans. Signal Processing, 47 ( 3 ) : 731- 745,1999.
  • 2S. Mann and S. Haykin,“The chirplet transform: Physical considerations.” IEEE Trans. Signal Processing, 43 ( 11 ) : 2745-2761,1995.
  • 3Qinye Yin,Shie Qian and Aigang Feng,"A fast refinement for adaptive Gaussian chirplet decomposition. " IEEE Trans. Signal Processing,50 ( 6 ) : 1298-1306,2002.
  • 4R. Gribonval," Fast matching pursuit with a muhiscale dictionary of Gaussian chirps. " IEEE Trans. Signal Processing,47 ( 3 ) :731-745,1999.49 ( 5 ) :994-1001,2001.
  • 5W. C. Karl, S. Mallat and A. S. Willsky, "High resolution pursuit for feature extraction. "Applied and Computational Harmonic Analysis 5:428-449,1998.
  • 6S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing, 41 (12) :3397-3415,1993.
  • 7赵玉娟,水鹏朗,张凌霜.基于子空间匹配追踪的信号稀疏逼近[J].信号处理,2006,22(4):501-505. 被引量:9
  • 8S. Ghofrani, D. C. McLernon, and A. Ayatollahi, "Comparing Gaussian and chirplet dictionaries for time-frequency analysis using matching pursuit decomposition. " Signal Processing and Information Technology,2003.
  • 9Richard G. Baraniuk and Dluglas L. Jones," Wigner-based formulation of chirplet transform. " IEEE Trans. Signal Processing,44 ( 12 ) :3129-3135,1996.
  • 10I. Daubechies and F. Planchon. "Adaptive Gabor transforms. "Applied and Computational Harmonic Analysis. 13 ( 1 ) : 1-21,2002.

二级参考文献8

  • 1Qinye Yin, Shie Qian and Aigang feng, A fast refinement for adaptive Gaussian Chirplet decomposition. IEEE.Trans. Signal Processing,50(6) : 1298 - 1306,2002.
  • 2I. Daubechies and F. Planchon. Adaptive Gabor transforms. Applied and Computational Harmonic Analysis. 13(1) : 1 -21,2002.
  • 3G. Davis,S. Mallat, and M. Avellaneda, Adaptive Greedy Approximations. Jour of constructive Approximation. 33(7) :2183 -2191,1991.
  • 4S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE. Trans. Signal Processing,41(12) :3397 - 3415,1993.
  • 5W. C. Karl, S. Mallat and A. S. Willsky, High Resolution Pursuit for Feature Extraction. Applied and Computational Harmonic Analysis 5:428-449,1998.
  • 6A. Bultan, A four-parameter atomic decomposition of chirplets, IEEE. Trans. Signal Processing, 47 ( 3 ) : 731 - 745,1999.
  • 7A. P. Suppappola and S. B. Suppappola, Adaptive time-frequency representation for multiple structures. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing. 14 - 16:579 - 583,2000.
  • 8R. Gribonval, Fast Matching pursuit with a multiscale dictionary of Gaussian Chirps. IEEE. Trans. 49 ( 5 ) : 994 -1001,2001.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部