期刊文献+

旋转状态下气膜冷却特性的数值研究 被引量:4

Numerical Study of Film Cooling Characteristics on a Rotating Turbine Blade Model
下载PDF
导出
摘要 通过对带有气膜孔倾斜角度为30°,60°和90°圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同平均吹风比、雷诺数和旋转数情况下前缘面侧与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律。结果表明,冷气受到离心力与哥氏力的共同作用在前缘面侧向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会降低壁面上的气膜冷却效率,高吹风比则不利于紧贴气膜孔下游区域的冷却;各气膜孔的流量系数随着平均吹风比的增大而增大,随旋转数的提高而减小;受哥氏力作用的影响,相同工况下后缘面侧各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值。 Computations are performed to simulate the flow and heat transfer characteristics of film-cooled rotating turbine blade models under different operating conditions. The chosen blade is a mid-span segment of a typical turbine rotor with two rows containing 14 staggered injection holes on both leading surface and trailing surface. The inclination angles to the leading and trailing surfaces areφ= 30°, 60° and 90°respectively. Detailed distributions of adiabatic film cooling effectiveness, Nusselt number and discharge coefficient on the leading and trailing surfaces are presented at various values of averaged blowing ratio, mainstream Reynolds number, and rotation number. Results show that the coolant is strongly influenced by the centrifugal force and Coriolis force to deflect toward the high-radius locations beside the leading surface, and this will lead to lower adiabatic effectiveness. The high values of blowing ratio are not suitable for the thermal protection near the exit of cooling holes, and the enhancement of Reynolds number can reduce the adiabatic effectiveness slightly. For discharge coefficient distributions, all the coefficients decrease with the increase of rotation number and increase with the augmentation of blowing ratio. Moreover, the discharge coefficient values beside the trailing surface are much higher than that beside the leading surface under the same operating conditions.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第2期274-279,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10371002) 教育部新世纪优秀人才支持计划(NCET-05-0189) 教育部博士点基金(200604114) 北京航空航天大学凡舟青年科研基金(20060402)
关键词 气膜冷却 旋转 冷却效率 流量系数 film cooling rotating adiabatic effectiveness discharge coefficient
  • 相关文献

参考文献14

  • 1Goldstein R J. Film cooling[M] // Advances in Heat Transfer. New York and London: Academic Press, Vol. 7, 1971: 321.
  • 2Foster N W, Lampard D. The flow and film cooling effectiveness following injection through a row of holes[J].ASME Journal of Engineering for Power, 1980, 102:584- 588.
  • 3Sathyamurthy P, Patankar S V. Prediction of film cooling with lateral injection [J]. Heat Transfer Turbulent Flows, ASME-HTD, 1990, 138: 61-70.
  • 4Lakehal D, Theodoridis G S, Rodi W. Computation of film cooling of a flat plate by lateral injection from a row of holes[J].International Journal of Heat and Fluid Flow, 1998,19:418-430.
  • 5Garg V K, Rigby D L. Heat transfer on a film-cooled blade-effect of hole physics [J]. International Journal of Heat and Fluid Flow, 1999, 20: 10-25.
  • 6Maiteh B Y, Jubran B A. Influence of mainstream flow history on film cooling and heat transfer from two rows of simple and compound angle holes in combination [J]. International Journal of Heat and Fluid Flow, 1999, 20: 158-165.
  • 7Garg V K. Heat transfer on a film-cooled rotating blade using different turbulence models[J].International Journal of Heat and Mass Transfer, 1999, 42: 789-802.
  • 8Martinez-Botas R F, Yuen C H N. Measurement of local heat transfer coefficient and film cooling effectiveness through discrete holes[R]. ASME 2000-GT-243,2000.
  • 9李冰,朱惠人,许都纯,邓明春.密度比对涡轮叶片表面气膜冷却换热系数的影响[J].航空学报,2007,28(4):801-805. 被引量:5
  • 10杨晓军,陶智,丁水汀,徐国强,罗翔.旋转状态下曲率对气膜冷却影响的分析[J].航空学报,2007,28(3):540-544. 被引量:6

二级参考文献18

  • 1朱惠人,马兰,许都纯,屈展.孔位对涡轮叶片表面气膜冷却换热系数的影响[J].推进技术,2005,26(4):302-306. 被引量:21
  • 2邓明春,朱惠人,李冰,许都纯.动量比对涡轮叶片气膜孔流量系数的影响[J].燃气涡轮试验与研究,2006,19(1):35-38. 被引量:4
  • 3Bradshaw P.Effect of streamline curvature on turbulent flow[R].AGARDograph AG-169,1973:169.
  • 4Ito S,Goldstein R J,Eckert E R G.Film cooling of a gas turbine blade[J].Journal of Engineering for Power,1978,100(3):476-483.
  • 5Goldstein R J,Komblum Y,Eckert E R G.Film cooling effectiveness on a turbine blade[J].Israel Journal of Technology,1982,20(4-5):193-200.
  • 6Schwarz S G,Goldstein R J.The influence of curvature on film cooling performance[J].Journal of Turbomachinery,1991,113(3):27-33.
  • 7Scot K W,David G B.High resolution film cooling effectiveness comparison of axial and compound angle holes on the suction side of a turbine vane[C]//ASME 51st Turbo Expo.New York,NY 10016 5990,United States:American Society of Mechanical Engineers,2006:GT2006-90225.
  • 8Dring R P,Blair M F,Joslyn H D.An experimental investigation of film cooling on a turbine blade[J].ASME Journal of Engineering for Power,1980,102:81-87.
  • 9Abhari R S,Epstein A H.An experimental study of film cooling in a rotating transonic turbine[J].ASME Journal of Turbomachinery,1994,116:63-70.
  • 10Takeishi K,Matsuura M,Aoki S,et al.Film cooling on a gas turbine rotor blade[J].ASME Journal of Turbomachinery,1991,112:488-496.

共引文献9

同被引文献50

  • 1李广超,朱惠人,樊慧明.角度和孔间距对双向扩张型孔流量系数影响的实验[J].航空动力学报,2009,24(3):499-506. 被引量:10
  • 2杨彬,徐国强,孟恒辉,赵振明.旋转状态下曲率模型上的气膜冷却效率[J].推进技术,2009,30(3):273-279. 被引量:7
  • 3杨卫华,马国锋,张靖周,张泽远.气膜冷却孔几何结构对流量系数的影响[J].推进技术,2005,26(5):413-416. 被引量:10
  • 4刘湘云,冯俊虎.一种新型的测温方法——液晶测温法[J].广东工业大学学报,2006,23(4):50-53. 被引量:3
  • 5Han J C,Dutta S,Ekkad S V,et al. Gas turbine heat transfer and cooling technology[M]. New York:Taylor Francis, 2000 ; 129-243.
  • 6Akella K V, Hart J C. Jet impingement cooling in rotating two pass rectangular channels with smooth walls[R].AIAA-97-2488,1997.
  • 7Epstein A H, Kerrebrock J L, Koo J J. Rotational effects on impingement cooling[M]. Hemisphere Publ. Corp., 1987:86-102.
  • 8XU Guoqiang, YANG Bin, TAO Zhi, et al. Theoretical a nalysis of rotating film cooling mechanism:Part II --A new dimensionless parameter to describe the coolant deflection phenomenon near the pressure surface[C]//The 12th In- ternational Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, Hawaii:[s. n. ], February 17-22, 2008.
  • 9Ng T Y,Luo S C,Lim T T,et al. On the relation between centrifugal force and radial pressure gradient in flow inside curved and S-shaped ducts[J]. Physics of Fluids, 2008, 055109 : 1-15.
  • 10Goldstein R J. Advances in b.eat transfer: Vol.7- Film cooling[M]. New York and London: Academic Press, 1971:321.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部