期刊文献+

基于模糊神经网络的列车制动控制智能算法研究 被引量:4

Intelligent Algorithm of Train Braking Control Based on Fuzzy Neural Network
下载PDF
导出
摘要 在基于模糊神经网络结构的基础上,通过分析影响建立模糊神经网络模型的主要因素,建立了用于列车运行控制的控制器模型,并且给出了相关参数的辨识方法。以货物列车为仿真对象,采用带有动量因子的BP反向传播算法对整个控制模型进行了仿真。仿真结果表明,基于模糊神经网络的智能算法能够满足列车制动控制的安全性、准确性及舒适性的要求,将其运用于列车制动控制是可行的。 First, the main factors which affected the establishment of an FNN model were analyzed based on the structure of FNN. Then, a controller model which was used in train operation control was established. Furthermore, the identification method of the relevant parameters was given. The freight train was used as simulation objects, and the back-propagation algorithm with momentum factor was used to simulate the entire control model. The results show that the intelligent algorithm based on fuzzy neural network can meet the requirements of safety, accuracy, and comfort. Its application in train braking control is feasible.
机构地区 北京交通大学
出处 《交通与计算机》 2008年第1期55-58,共4页 Computer and Communications
基金 国家自然科学基金重点项目资助(批准号:60634010)
关键词 列车制动控制 模糊神经网络 模糊系统 反向传播算法 train brake control fuzzy neural network fuzzy system back-propagation algorithm
  • 相关文献

参考文献9

二级参考文献24

共引文献211

同被引文献18

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部