期刊文献+

不可微向量优化问题严有效解的最优性条件(英文) 被引量:2

Optimality Conditions for Strictly Efficient Solutions of Nondifferentiable Vector Optimization Problem
下载PDF
导出
摘要 本文研究向量优化问题在严有效解意义下的最优性条件.在局部凸Hausdorff拓扑线性空间中,在近似锥一次类凸假设下,利用凸集分离定理得到了最优性必要条件.借助Gateaux导数引进了几种新的凸性,在新的凸性假设下得到了最优性充分条件. Optimality conditions for vector optimization problem to attain strictly efficient solutions are considered in the paper. Under generalized cone-subconvexlikeness for vector valued mappings in locally-convex Hausdorff topological vector spaces, by using separation theorem for convex sets, optimality necessary conditions" are derived. Several kinds of new convexity are introduced with Gateaux derivatives as an aid, under the assumption of which optimality sufficient conditions are obtained.
机构地区 南昌大学数学系
出处 《运筹学学报》 CSCD 北大核心 2008年第1期43-50,共8页 Operations Research Transactions
基金 the National Natural Science Foundation of China Grant 1046007 the Foundation of Education Section of Excellent Doctorial Theses Grant 200217 the Natural Science Foundation of Jiangxi Province 0611081
关键词 运筹学 多目标规划 最优性条件 广义次类凸性 严有效解 Operations research, multiobjective programming, optimality condition, generalized subconvexlikeness, strictly efficient solution
  • 相关文献

参考文献1

二级参考文献2

共引文献13

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部