期刊文献+

关联规则的快速提取算法 被引量:8

Fast Algorithm for Association Rules Extraction
下载PDF
导出
摘要 针对基于频繁项集的关联规则挖掘算法效率低,需要多次扫描数据库且生成冗余候选项集问题,该文利用频繁项集的Aprior性质和概念格的基本思想提出一种关联规则提取算法,利用极大频繁项集来进行规则提取,去除了多数冗余的候选项集,提高了提取效率。 Association rules mining is an important research branch in data mining. However, most algorithms based on frequent item sets have to scan databases many times, which reduces extraction efficiency. This paper presents an algorithm to find all maximal frequent item sets quickly. The algorithm is based on concept lattice and it can certify all frequent item sets efficiently, which avoids calculating the redundant item sets and improves the extraction efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第5期63-65,共3页 Computer Engineering
关键词 关联规则 数据挖掘 频繁项集 概念格 提取 association rules data mining frequent item sets concept lattice extraction
  • 相关文献

参考文献5

  • 1Wille R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts[M]//Rival I. Ordered Sets. Dordrecht Boston: Reidel, 1982: 445-470.
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Datahases[C]//Proc. of 1993 ACM-SIGMOD International Conf. on Management of Data. Washington D. C.: ACM Press, 1993-05.
  • 3Godin R, Missaoui R, Alaoui H. Learning Algorithms Using a Galois Lattices Structure[C]//Proc. of the 3rd Int'l Conf. on Tools for Artificial Intelligence. San Jose, Calif." IEEE Computer Society Press, 1991.
  • 4刘利蜂 吴孟达.基于属性矩阵的概念格的构造算法.模糊系统与数学,2006,20(9):107-111.
  • 5Wang Yuanyuan, Hu Xuegang. A Fast Algorithm for Mining Association Rules Based on Concept Lattice[C]//Proceedings of the 3rd Conference on Machine Learning and Cybernetics. Shanghai: [s. n.], 2004.

同被引文献77

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部