摘要
设A1、A2是Hilbert空间H上的两个有界线性算子,利用算子分块技巧研究了1×2算子矩阵(A1 A2)作为从H⊙H到H上的算子Moore-Penrose逆,当R(A1)∩R(A2)={0}和R(A1)■R(A2)⊥时,给出了矩阵(A1 A2)的Moore-Penrose逆的具体表示.
Let A1, A2 be two bounded linear operators on a Hilbert space S. By using the technique of block operator matrix, the Moore-Penrose inverse of a 1 × 2 operator matrix (A 1 A2 ) is studied, where (A 1 A a) is an operator from H+H into H. An explict representation of the Moore-Penrose inverse of (A1 A2) is given, when R(A1)∩R(A2)= {0} or R(A1) lohtain in R(A2)^⊥.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期11-14,共4页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10571113)