期刊文献+

免疫算法在基因表达式程序设计中的应用 被引量:2

Application of Immune Algorithm in Gene Expression Programming
下载PDF
导出
摘要 针对基因表达式程序设计(GEP)收敛速度慢、收敛后适应度不高和易陷入局部最优等缺陷,利用GEP染色体简单、线性和紧凑、易于进行遗传操作和免疫算法(Immune algorithm,IA)抗体多样性和免疫记忆等优点,提出了一种免疫基因表达式程序设计算法(Immune Gene Expression Programming,IGEP)。将免疫算法的按抗体浓度进行调节和免疫记忆的机制用于GEP的遗传算子中,收敛速度比GEP要快、收敛后适应度高且有效地克服了GEP不成熟收敛,理论证明该算法是全局收敛的。函数优化的仿真实验结果,进一步验证了该算法的性能。 In view of the disadvantages of gene expression programming, such as low convergence rate, low fitting degree and easily falling into local best, an Immune Gene Expression Programming is proposed based on the advantages of GEP,such as simplicity, linearity, compact in Chromosome, easy generic operation, variety of antibody, memory of immunity in Immune Algorithm and so forth. A new idea of the proposed algorithm is that the mechanism of adjustment according to immunity' s density and immunity' s memory is used in the generic operation of GEP. It has high convergence speed, high fitting degree and overcomes the premature convergence the Furthermore, it is theoretically proved to be overall convergence. The performance of the IGEP is proven via computer simulation for the function optimization.
出处 《计算机仿真》 CSCD 2008年第3期189-191,317,共4页 Computer Simulation
关键词 基因表达式程序设计 免疫算法 浓度 全局收敛 Gene expression programming(GEP) Immune algorithms Density(IA) Overall convergence
  • 相关文献

参考文献7

二级参考文献41

共引文献108

同被引文献47

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部