期刊文献+

关于5次对称形式正性的机器判定

AUTOMATED DECISION OF POSITIVITY OF SYMMETRIC QUINTIC FORMS
原文传递
导出
摘要 利用参系数多项式正实根的判别序列,给出了多变元5次对称形式在畔上取非负值的显示判定方法.并以此为依据,导出了一个有效的算法,能够在变元数较多时也可以使用计算机来自动判定. In this paper, based on the positive root discriminant sequence of polynomial with symbolic coefficients, an explicit criterion of positivity on R^n+ is presented for symmetric quintic forms, and accordingly an efficient algorithm is derived from the criterion. By means of our algorithm, the positivity of symmetric quintic forms with much more variables can be determined automatically by computer.
作者 姚勇 冯勇
出处 《系统科学与数学》 CSCD 北大核心 2008年第3期313-324,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家973计划项目(2004CB318003) 中科院知识创新工程重要方向(KJCX-YW-S02) 国家自然科学基金(10771205)资助.
关键词 正根的判别序列 5次对称形式 机器证明 Positive root discriminant sequence, symmetric quintic forms, automated theorem proving.
  • 相关文献

参考文献3

二级参考文献54

  • 1张景中,杨路,高小山,周咸青.几何定理可读证明的自动生成[J].计算机学报,1995,18(5):380-393. 被引量:22
  • 2[1]Mishra B. Algorithmic Algebra. New York: Springer-verlag, 1993
  • 3[2]Yang L, Zhang J Z, Hou X R. Nonlinear Algebraic Equation Systems and Automated Theorem Proving.Shanghai: Shanghai Science, Technology and Education Publishing House, 1996 (in Chinese)
  • 4[3]Yang L, Hou X R, Zeng Z B. A Complete Discrimination System for Polynomials. Science in China(Series E), 39(6): 628-646
  • 5[4]Yang L, Hou X R, Xia B C. A Complete Algorithm for a Class of Inequality Type Theorems. Science in China (Seires F), 2001, 44:33-49
  • 6[5]Yang L, Xia B C. Explicit Criterion to Determine the Number of Positive Roots of a Polynomial.MM Research Preprints, 15, 134-145. Beijing: Mathematics Mechanization Research Center, 1997
  • 7[6]Yang L. Recent Advances on Determining the Number of Real Roots of Parametric Polynomials. J.Symb. Conput., 1999, 28:225-242
  • 8[7]Wyman J. The Binding Potential, A Neglected Linkage Concept. J. Mol. Biol., 1965, 11:631-644
  • 9[8]Briggs W E. Zeros and Factors of Polynomials with Positive Coefficients and Protein-ligand Binding.Rocky Mount. J. Math., 1985, 15(1): 75-89
  • 10[9]Bardsley W G. Factorability of the Allosteric Binding Polynomial and Graphical Manifestations of Cooperativity in Third Degree Saturation Functions. J. Theor. Biol., 1977, 67:407-431

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部