摘要
证明了二阶p-Laplacian算子方程:(φp(u′))′+a(t)f(u)=0,u(0)=u(ω),u′(0)=u′(ω),t∈R(0<ω<1)正周期解的存在性,利用锥上的不动点定理得到了几个充分条件.
In the paper, the existence of positive periodic solutions for the differential equations of 2-order p-Laplacianoperator: (φp(u'))' +a(t)f(u) =0,u(0) =u(ω),u'(0) =u'(ω),t∈R(0 〈ω〈1) is shown. Several sufficient conditions are given by a fixed point theorem on cones.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期155-158,共4页
Journal of Sichuan Normal University(Natural Science)
基金
四川省重点科研基金(07ZB114)资助项目