期刊文献+

二阶p-Laplacian算子方程的正周期解(英文) 被引量:7

Positive Periodic Solutions for the Differential Equations of 2-order p-Laplacian Operator
下载PDF
导出
摘要 证明了二阶p-Laplacian算子方程:(φp(u′))′+a(t)f(u)=0,u(0)=u(ω),u′(0)=u′(ω),t∈R(0<ω<1)正周期解的存在性,利用锥上的不动点定理得到了几个充分条件. In the paper, the existence of positive periodic solutions for the differential equations of 2-order p-Laplacianoperator: (φp(u'))' +a(t)f(u) =0,u(0) =u(ω),u'(0) =u'(ω),t∈R(0 〈ω〈1) is shown. Several sufficient conditions are given by a fixed point theorem on cones.
作者 陈顺清
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期155-158,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省重点科研基金(07ZB114)资助项目
关键词 P-LAPLACIAN算子 不动点 正周期解 p-Laplacian operator Fixed point Cone Positive periodic solutions
  • 相关文献

参考文献9

  • 1Henderson S, Wang Hai-gan. Positive solutions for nonlinear eigenvalue problems [ J ]. J Math Anal Appl, 1997,208:252-259.
  • 2Erbe L H, Hu Shou-chuan, Wang Hai-gan. Multiple positive solutions of some boundary value problems [ J ]. J Math Anal Appl, 1994,184:640-648.
  • 3Chen Shun-qing. J South West China Norm Univ:Natur Sci,2004,29(5) :803-806.
  • 4李永祥.二阶非线性常微分方程的正周期解[J].数学学报(中文版),2002,45(3):481-488. 被引量:45
  • 5Wong Fu Hsiang. Existence of positive solutions for m-Laplacian Bvps[ J]. Appl Math Letters, 1999,12:11-17.
  • 6Erbe L H, Wang Hai-gan. On the existence of positive solutions of ordinary differential equations[ J ]. Proc Am Math Soc, 1994, 120 ( 3 ) ,743-748.
  • 7孙伟平,葛渭高.一类非线性边值问题正解的存在性[J].数学学报(中文版),2001,44(4):577-580. 被引量:29
  • 8Deimling K. Nonlinear Functional Analysis [ M ]. Berlin : Springer-Verlag, 1985.
  • 9Guo Da-jun, Sun Jing-xian, Liu Zhao-li. Functional Method of Nonlinear Ordinary Differential Equations [ M ]. Jinan:Shandong Science and Technology Press, 1995.

二级参考文献20

  • 1Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 2Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 3Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 4Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 5Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 6Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 7Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 8Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 9Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.
  • 10Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in potential,J. Diff. Equs., 1991, 93: 1-18.

共引文献71

同被引文献56

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部