期刊文献+

DZ125高温合金定向凝固微观组织的CA法模拟 被引量:22

CA SIMULATION OF MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY
下载PDF
导出
摘要 采用伪二元相图法对DZ125多元合金进行了简化,并用二维Cellular Automaton(CA)法模拟了合金定向凝固微观组织.通过采用不均匀连续形核模型,在考虑到枝晶生长动力学的基础上,模拟了不同抽拉速度下合金定向凝固组织形貌、枝晶界面形态以及一次枝晶间距的变化,说明树枝晶竞争生长中存在"分枝"与"淹没"的机制;并且随凝固速率的增加,合金凝固组织从分枝较少的胞状树枝晶向分枝发达的树枝晶转变.模拟的一次枝晶间距从凝固速率为50μm/s时的132μm减少到凝固速率为500μm/s时的69μm.模拟结果与实验结果吻合较好. Directionally solidified microstructures of DZ125 superalloy have been simulated by 2D Cellular Automation method, in which the DZ125 multicomponent superalloy is simplified as a pseudobinary alloy. Taking account of continuous nucleation model and dendritic growth kinetics, an array of dendritic microstructures, interface morphology and the variation of primary dendritic arm spacing with the growth rate are obtained and investigated. The simulation results show that the dendritic competitive growth has the characteristic of tip-splitting and annihilation during directional solidification. With the increase of the growth rate, the interface morphologies of DZ125 superalloy change from cellular to dendritic pattern. The primary dendritic arm spacing decreases gradually from 132 μm to 55 μm as the growth rate increases from 50 μm/s to 500 μm/s. These simulation results match well with the observations.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2008年第3期365-370,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50401014 西北工业大学英才计划项目资助~~
关键词 DZ125高温合金 定向凝固 元胞自动机 微观组织模拟 DZ125 superalloy, directional solidification, cellular automaton, microstructure simulation
  • 相关文献

参考文献12

二级参考文献19

  • 1张国栋,刘绍伦,何玉怀,汪武祥,钟斌.FGH95粉末盘材料热/机械疲劳和等温低周疲劳断裂行为研究[J].航空动力学报,2005,20(1):73-77. 被引量:7
  • 2[1]Zhao Haidong(赵海东), Liu Baicheng(柳百成), LiuWeiyu(刘蔚羽), Wang Dongtao(王东涛). Numerical Simulation of the Microstructure of S G Cast Iron[J]. Chinese Journal of Mechanical Engineering(机械工程学报), 2000, 36(2): 76~80
  • 3[2]Spittle J A, Brown S G R. Computer Simulation of the Effects of Alloy Variables on the Grain Structures of Castings [J]. Acta Metall, 1989, 37: 1 803~1810
  • 4[3]Rappaz M. Gandin Ch A. Probabilistic Modeling of Microstructure Formation in Solidification Process [J]. Acta Metall Mater, 1994, 41: 346~360
  • 5[4]Karma A, Rappel W J. Phase-Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics [J]. Phys Rev E, 1996, 53(4): R3 017~R3 020
  • 6[5]Nestler B. A Multiphase-Field Model: Sharp Interface Asymptotics and Numerical Simulations of Moving Phase Boundaries and Multijunctions [J]. Journal of Crystal Growth, 1999, 204: 224~228
  • 7[6]Steinbach I, Schmitz G J. Three Dimensional Modeling of Equiaxed Dendritic Growth on a Mesoscopic Scale[J]. Acta Mater, 1999, 47: 971~982
  • 8[7]Cantor B, Vogel A. Cryst J Growth [J]. 1977, 14: 109
  • 9BECK T,PITZ G.Thermal-mechanical and isothermal fatigue of IN792CC[J].Materials Science and Engineering A,1997,234-236:719-722.
  • 10STRAN GMAN T E.Thermal-mechanical fatigue life model for coated superalloy turbine components[A].Superalloys 1992[C].Warrendale,PA:The Minerals Metals &Materials Society,1992.795-804.

共引文献54

同被引文献306

引证文献22

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部